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Structural genomics sheds light on protein functions and
remote homologs across the insect tree of life
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Protein structure bridges the sequence–function relationship, enabling deep exploration of biological processes across diverse
organisms. Insects, the most diverse animal lineage, accounting for over 50% of all described animal species, provide an exceptional
system for exploring sequence–structure–function relationships. Here, we reconstructed a comprehensive and well-resolved
phylogeny of 4854 insects, spanning all orders. Leveraging this framework, we created an atlas of 13.29 million predicted protein
structures from 824 representative species, including 11.63 million newly predicted structures. Structural clustering revealed that
proteins with divergent sequences but similar structures could be effectively grouped together. Structural similarity searches
against proteins with well-characterized functions yielded annotations for 7.61 million insect proteins, including up to 14% of
previously unannotated proteins. We further identified 750 million remote homologs between insect proteins, many of which trace
back to ancient branches of the insect phylogeny. Remarkably, despite extensive sequence divergence, cGAS-like receptors (cGLRs)
were structurally conserved across all 824 insects. Experimental assays demonstrated that these structurally identified cGLRs play a
crucial role in antiviral defense in the yellow fever mosquito. Our findings highlight the significance of structural genomics for
understanding protein function and evolution across the tree of life.
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INTRODUCTION
The genomics revolution, fueled by rapid advances in genome-
sequencing technologies, has dramatically expanded our knowl-
edge of molecular data and transformed our understanding of the
genetic diversity and evolutionary relationships of life on Earth.1–8

Among genomic data, protein sequences (i.e., proteomes) are rich
archives for studying the molecular functions that govern cellular
processes.9,10 In comparative genomics, sequence-based homol-
ogy searches have been a standard approach for the transfer of
functional annotations between homologous proteins in different
organisms. However, this approach often loses sensitivity when
attempting to decipher the relationships between remote (or
distantly related) protein homologs,11–13 limiting the full func-
tional characterization of proteomic data.
According to the sequence–structure–function paradigm in

biology,14,15 the three-dimensional structure of a protein, derived
from its primary sequence, is a key determinant of its molecular
function. Protein structures typically evolve more slowly than
sequences, likely owing to constraints imposed by protein folding

and preservation of function11,16–20; thus, protein structures and
functions may be conserved over longer evolutionary timescales
than protein sequences. Recent breakthrough tools in accurate
structure prediction, such as AlphaFold,21 ColabFold,22 ESMFold,23

and RoseTTAFold,24 now enable structural predictions at large
scale. At the same time, protein structures with well-characterized
functions, available from the AlphaFold database’s Swiss-Prot25

and the Protein Data Bank (PDB),26 together with curated domain
structures from the CATH database,27,28 collectively provide a
highly precise resource for protein functional annotation. How-
ever, despite these advances in genomics, structure prediction,
and functional annotation, there has not yet been a comprehen-
sive exploration of sequence–structure–function relationships
across an entire biological system within the tree of life.
In this study, we focused on the class Insecta, a highly diverse

group that includes over 50% of all described living animals29–31

and has a profound impact on ecosystems, economies, and
human societies. We compiled publicly available genome and
transcriptome data and used it to reconstruct a comprehensive
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and well-resolved phylogeny of 4854 insects representing all 28
insect orders. By sampling 824 representative insects, we
generated an atlas of predicted structures for 13.29 million
proteins. Analysis of structural clusters demonstrated that the use
of protein structures substantially increases the sensitivity of
homologous protein detection compared with the use of protein
sequences. Structural similarity searches yielded functional
annotations for 7.61 million proteins, primarily derived from
functionally well-characterized non-insect proteins. Finally, we
identified 750 million remote homologous proteins characterized
by low sequence identity (< 0.25) but high structural similarity
(> 0.5) across the insect tree of life. In particular, we discovered
that cGAS-like receptors (cGLRs) are structurally conserved in all
824 insects, and we experimentally validated their role in antiviral
defense in the yellow fever mosquito, a vector of human
arboviruses.

RESULTS
A comprehensive insect tree of life
To infer a comprehensive phylogeny of the class Insecta as of
October 11, 2023, we gathered genomes (1724) and transcrip-
tomes (3130) of 4854 insects from 17 public repositories
(Supplementary information, Table S1). These 4854 insects
represent all 28 orders, when Blattodea including Isoptera is
considered monophyletic31,32 (Supplementary information, Fig. S1
and Table S2). Analysis of assembly completeness revealed that
3110 out of 4854 insects (~64%) had at least 80% of the 1367 full-
length Benchmarking Universal Single-Copy Ortholog (BUSCO)
genes33 (Supplementary information, Fig. S2).
After constructing a multiple amino acid sequence alignment

and trimming ambiguous regions for each of the 1367 BUSCO
genes from 4854 insects and 10 Entognatha outgroups (Supple-
mentary information, Fig. S3), we retained the 824 BUSCO genes
with a taxon occupancy of ≥ 50% and an alignment length of ≥
150 (Supplementary information, Fig. S4). We inferred a
concatenation-based maximum likelihood (ML) phylogeny (Fig. 1;
Supplementary information, Fig. S5) and a coalescent-based
ASTRAL phylogeny (Supplementary information, Fig. S6). Average
branch support was 99.8% for the concatenation-based phylogeny
and 95.0% for the coalescent-based phylogeny (Supplementary
information, Fig. S7). Comparison of the concatenation- and
coalescent-based phylogenies revealed that 3731 (77%) inter-
nodes were topologically identical, whereas the remaining 1122
(23%) were topologically incongruent. Among these 1122 incon-
gruent internodes, 842 (75%) involved relationships within
families, whereas the remaining 280 (25%) involved relationships
within orders.
Our concatenation- and coalescent-based phylogenies strongly

supported the monophyly of each of the 28 orders and robustly
resolved all intraordinal relationships with at least 95% support
(Fig. 1; Supplementary information, Fig. S8). These higher-level
phylogenies were consistent with those from the landmark
phylogenomics study of Misof et al.31 which used a moderate
number (126) of insect genomes and transcriptomes. However,
our two comprehensive phylogenies demonstrated improved
resolution and robustness. For instance, our concatenation- and
coalescent-based phylogenies recovered the order Raphidioptera
(21 taxa) as the sister group to the orders Megaloptera (11 taxa)
and Neuroptera (66 taxa) with 100% support, whereas the
landmark phylogenomics study (Raphidioptera: 2 taxa; Megalop-
tera: 2 taxa; Neuroptera: 4 taxa) provided low support for this
relationship (bootstrap values= 2%–30%) across different amino
acid datasets. In addition, our comprehensive phylogenies
robustly resolved the most contentious relationships among ten
orders of Polyneoptera.34–36 Overall, our results highlight the
importance of comprehensive taxon sampling for improving

resolution and robustness in phylogenomics. The thorough and
well-resolved insect tree of life also laid a solid foundation for
subsequent structural genomics investigations.

An atlas of protein structures in insects
By leveraging the new insect tree of life (Fig. 1), we created an
atlas of 13.29 million predicted protein structures from 824 insect
representatives spanning all 28 orders (Supplementary informa-
tion, Fig. S9 and Table S3). This included 1.66 million structures
(12.5%) retrieved from the AlphaFold database21,25 and 11.63
million structures (87.5%) newly generated using ESMFold23

(Fig. 2a). In our preliminary experiment, we randomly selected
267,694 proteins from 16 insects to compare the consistency of
structure predictions between AlphaFold2 and ESMFold. We
observed a strong correlation between the confidence of our
ESMFold predictions and their structural similarities to AlphaFold2
predictions (Pearson’s correlation coefficient r= 0.82, P-value < 2.2
× 10−16) (Supplementary information, Fig. S10), consistent with a
previous study.23

To explore the diversity of protein structures among 824 insects,
we clustered the 13.29 million protein structures using the
Foldseek cluster module,17,37 with a structural alignment threshold
of 70% coverage, TM-score of 0.4, E-value of 0.001, sensitivity of
7.5, and cluster reassignment value of 1 (Fig. 2a). This analysis
yielded 4.22 million structural clusters, 11.3% of which were non-
singleton clusters that contained 9.54 million proteins, represent-
ing 72% of the total 13.29 million proteins. This percentage of
non-singleton clusters falls between those reported in the AFESM
(AFDB + ESM) database (7%)38 and the AFDB database (27%).17 We
next examined structure prediction confidence scores (predicted
local distance difference test, pLDDT) and found that as cluster
size increased, the proportion of cluster members with very low
confidence scores (pLDDT < 50) decreased, stabilizing below 8%
starting from clusters containing ≥ 10 members (Supplementary
information, Fig. S11). In addition, proteins in large clusters (≥ 10
members) had lower proportions of very-low-confidence struc-
tures (pLDDT < 50: 3% vs 56%), short sequences (< 100 amino
acids: 2% vs 14%), and intrinsically disordered proteins (IDPs: 12%
vs 41%) compared with proteins in small clusters (< 10 members)
(Fig. 2b). This observation is consistent with previous find-
ings.20,39,40 Therefore, our subsequent analyses focused on the
87,461 large structural clusters with at least 10 members.
To gauge the reliability of structural clustering for these 87,461

clusters, we assessed the structural similarity of each cluster using
LDDT and TM-score metrics, as described in previous studies.17,38

Our analysis showed median structural similarity values of 0.74 for
LDDT and 0.63 for TM-score (Fig. 2c), indicating that the clusters
tended to be structurally homogeneous. Analysis of taxonomic
distributions revealed that 21,451 clusters (24.53%) were located at
the branch leading to the most recent common ancestor of insects
(Insecta), 51,960 (59.41%) at inter-ordinal branches (between orders),
12,981 (14.84%) at internal branches within specific orders (order-
specific), and 1069 (1.22%) at external branches within specific
species (species-specific) (Fig. 2d). The majority of clusters thus
occurred along inter-ordinal branches of the insect tree of life. In
addition, we investigated whether proteins within each structural
cluster identified by the structure-based method could be
reconstituted using the sequence-based method MMseqs241 under
the same criteria. The sequence-based method failed to group all
structurally similar proteins into a single cluster, with a median of 7
split clusters (Supplementary information, Fig. S12a, b). For example,
structural cluster 5407 was split into 28 small sequence-based
clusters, and structural cluster 7528 was split into 31 such clusters,
owing to very low sequence identity (Supplementary information,
Fig. S12c). This suggests that structural analysis can be more
effective than sequence analysis for identifying similarity between
insect proteins.
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Structure-based exploration of insect functional genomics
To gain insight into the functions of the 87,461 large clusters with
at least 10 members, we performed structure-based annotations
using structural databases, including full-length structures with
well-characterized functions from the AFDB Swiss-Prot25 and
PDB26 databases and curated domain structures from the CATH
SSG5 database,27,28 following previous structural genomics
studies.28,38 We found that the clusters had median functional
annotation consistency values (that is, the fraction of functional
annotations from the highest-confidence representative shared
within the cluster) of 0.89 and 0.96 for the full-length structure-
based and domain structure-based approaches (Fig. 3a), respec-
tively. This indicates that annotation of a cluster representative
can reflect the overall cluster annotation. Consequently, we

successfully annotated 64,356 clusters (73.6%; totaling 7.48 million
proteins) via the full-length structure-based method (Fig. 3b). For
the remaining clusters that were not annotated by the full-length
structure-based method, we used the domain structure-based
method and found that 4008 (4.6%; 0.13 million proteins) were
annotated (Fig. 3b). Together, these analyses assigned functional
annotations to 68,364 clusters comprising 7.61 million proteins
(92% of the total 8.24 million proteins). Notably, 14.4% of these
functionally annotated proteins, identified through structure-
based methods, could not be annotated using sequence-based
approaches in a similar manner. These proteins exhibited a wide
range of functions, including involvement in cellular processes,
development, response to stimuli, reproduction, the immune
system, and detoxification.
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Fig. 1 A comprehensive and well-resolved phylogeny of 4854 insects. The concatenation-based ML phylogeny (lnL=−191659866.544) was
inferred from amino acid sequences of 824 BUSCO genes (total 276,683 sites) under a single LG+ G4 substitution model using IQ-TREE
multicore v2.0.7. The complete phylogenetic relationships of 4854 insects, spanning all 28 orders,31,32 are given in Supplementary information,
Fig. S5. Branch support values near internal branches correspond to ultrafast bootstrap support. The only three internal branches (two within
the order Coleoptera and one within the order Lepidoptera) with support values smaller than 95% are indicated with solid black dots. The
branches and outer circle are colored according to their order names. The inner circle shows assembly completeness assessed with a set of
1367 conserved BUSCO genes. We also reconstructed a coalescent-based phylogeny of 4854 insects, which can be found in Supplementary
information, Fig. S6. Note that the 10 Entognatha outgroups are not shown in the tree. Images representing taxa were obtained from the
PhyloPic website (http://phylopic.org).
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We next mapped the taxonomic distributions of the 68,364
annotated clusters and 19,097 unannotated clusters onto the
phylogeny of 824 insect species. Our analysis showed that species-
specific clusters had a substantially higher proportion of
unannotated clusters compared with those involving two or more
species (Fig. 3b). To identify the organisms that contributed to the
annotations of our structural clusters, we extracted taxonomic
information from the best hits of the cluster representatives. The
cluster functional annotations were derived from a wide range of
species, including animals, fungi, plants, bacteria, archaea, and
viruses. Most of these species were non-insect model organisms
such as Homo sapiens, Mus musculus, Caenorhabditis elegans,
Saccharomyces cerevisiae, Arabidopsis thaliana, and Escherichia coli
(Fig. 3c). Gene Ontology (GO) analysis of the cluster representa-
tives revealed diverse functions, including many not previously
reported in insects (Supplementary information, Fig. S13a).
Representative examples are shown in Fig. 3d: Cluster 10381,
including 138 proteins from 138 insects covering five different
orders, was structurally homologous to human Gasdermin B (PDB:

8GTN_A), an executor of inflammasome-dependent pyroptotic cell
death42–46; Cluster 20226, containing 57 proteins from 19 beetles,
was structurally homologous to the bacterial pore-forming toxin
protein PirB (PDB: 3X0U_B) from a family of insecticidal toxins47–49;
and Cluster 18826, including 63 proteins from Contarinia nasturtii,
was structurally homologous to fungal Fanzor (PDB: 8GKH_P), a
eukaryotic programmable RNA-guided DNA endonuclease for
genome editing.50–54

We predicted the functions of the 19,097 large clusters (21.8%
of the total) that were not annotated by either the full-length or
the domain structure-based method using the structure-based
functional prediction tool DeepFRI.55 We found that these
proteins exhibited distinct functions compared with proteins
successfully annotated with well-characterized proteins (Supple-
mentary information, Fig. S13a, b). For example, some of these
unannotated clusters were predicted to participate in membrane
transport activities, a functional category that was underrepre-
sented in clusters annotated with functionally well-characterized
proteins.
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Lastly, for the remaining small structural clusters with fewer than
10 members, we also performed structure-based functional
annotations of their representatives with high-confidence predic-
tions (pLDDT > 70) and found that 6.2% could be functionally

annotated. To enhance access to all annotated functions of
the insect proteins via structure or sequence queries, we set
up The Insect Protein Structure (TIPS) database (http://
tips.shenxlab.com/).
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Massive remote homologs between insect proteins
Given that protein structures are generally conserved over longer
evolutionary timescales than are protein sequences,17–19 we
identified remote (or distantly related) homologs between insect
proteins within each cluster (Supplementary information, Fig. S14).
We defined a pair of insect proteins as remote homologs if their
protein sequence identity was < 0.25 and their structural similarity
was > 0.5 (Fig. 4a). These thresholds were chosen because
sequence-based homology detection typically fails below 0.25
amino acid identity,11–13 and a structural similarity above 0.5
indicates the presence of shared structural folds.56,57 We identified
750 million remote homologs with highly similar structures but
markedly divergent sequences from 12,308 distinct clusters. To
assess their prevalence, we calculated the percentage of unique
cluster-member pairs that exhibited remote homology, excluding
self-comparisons. The prevalence ranged from 10% to 79%, with a
median of 18% (Fig. 4b).
Examination of the functional annotations for these 12,308

cluster representatives showed that most were associated with
cellular-, regulation-, response to stimulus-, localization-, and
development-related biological processes (Fig. 4c). Evolutionary
analysis revealed that among these 12,308 clusters containing
remote homologies (left panel in Fig. 4d; Supplementary
information, Fig. S15), 4191 (34.1%) occurred at the branch
leading to the most recent common ancestor of 824 insects
(Insecta), 7709 (62.6%) at the inter-ordinal branches (between
orders), and 408 (3.3%) at internal branches within specific orders
(order-specific). These results suggest that the majority of clusters
that contain remote homologies arose during the early diversifica-
tion of insects and were established deep within the insect tree of
life.
Finally, we present three functionally significant examples of

structural alignments that reveal connections among remote
homologous proteins across different evolutionary timescales
(right panel in Fig. 4d). In the first example, for the class Insecta, a
jumping bristletail protein (Archaeognatha: Pedetontus okajimae,
protein ID: g7557_i0.p1) and a housefly protein (Diptera: Musca
domestica, UniProt: A0A1I8M0N7) cluster with high structural
similarity (0.866) despite low sequence identity (0.224) in
Cluster 353. Both exhibit structural homology to juvenile hormone
(JH) acid O-methyltransferase (UniProt: Q9VJK8) from the dipteran
D. melanogaster, which catalyzes the final step of JH biosynthesis
and is essential for regulating insect growth and metamorpho-
sis.58,59 The second example involves the subclass Pterygota
(winged insects), in which a protein from an odonate (Odonata:
Ischnura elegans, NCBI: LOC124170901) clusters with one from a
hen flea (Siphonaptera: Ceratophyllus gallinae, protein ID:
g4626_10_p1) in Cluster 1287, displaying high structural similarity
(0.734) but low sequence identity (0.223). These proteins are
structural homologs of Wntless (UniProt: B4J2W3) from the
dipteran Drosophila grimshawi, which is a cargo for transporting
Wnt signaling molecules and is critical for embryonic develop-
ment.60,61 The third example involves salivary proteins in the order

Diptera, in which a protein from the mosquito Aedes albopictus
(UniProt: Q5MIW7) and another from the mosquito Anopheles
quadrimaculatus (UniProt: A0A182XL61) have a structural similarity
of 0.842 and a sequence identity of 0.232 in Cluster 10598. Both
are structural homologs of the long-form salivary protein D7L1
(PDB: 6v4c_A) from the mosquito Culex quinquefasciatus, which
plays a key role in blood feeding by inhibiting host hemosta-
sis.62,63 Together, these three cases exemplify how structural
homology can reveal functional relationships that remain hidden
at the sequence level, underscoring their importance for under-
standing protein function and evolution.

Structurally conserved but sequence‑divergent cGLRs pervade
the insect tree of life
In the set of 12,308 structural clusters that contained remote
homologies (Fig. 4), Cluster 142 was the most prevalent,
accounting for 41% of remote homologies and including all 824
insect species (Supplementary information, Fig. S16). This cluster
contained 3056 proteins, with 1–18 copies per species across the
824 insects (Fig. 5a; Supplementary information, Table S4),
including two functionally well-characterized cGLRs from D.
melanogaster that serve as sensors in antiviral innate immu-
nity.64,65 Compared with fruit fly cGLRs, those in other insects
exhibited remarkable sequence divergence, with an average
identity of 0.24, but maintained a high structural similarity of
0.73 (Fig. 5a). A recent study by Li et al.66 used an amino acid
position-specific approach to identify over 3000 putative cGLRs
across 583 animal species, including 413 putative cGLRs from 193
of the insects we examined. Our analysis identified 944 putative
cGLRs in the same 193 insects, including 404 (98%) from Li et al.
and 540 unique to our study (Supplementary information, Fig. S17).
Structural alignment revealed that the 9 cGLRs exclusive to Li et al.
showed lower structural similarity (average 0.56) than the 540
unique cGLRs from our study (0.73) and the 404 overlapping
cGLRs (0.77).
We characterized the molecular functions of two putative cGLRs

from the yellow fever mosquito (Aedes aegypti) that had not been
reported previously, including in Li et al.’s study. Knockdown
(70%–80% efficiency) of Aa-cGLR1 or Aa-cGLR2 significantly
increased the prevalence (Fig. 5b) and intensity (Supplementary
information, Fig. S18 and Table S5) of dengue and Zika virus
infections. Overexpression of these cGLRs in C6/36 cells signifi-
cantly reduced viral infections (Fig. 5c). Transcriptome analysis
revealed that 238 genes downregulated in Aa-cGLR1 knockdowns
and 247 in Aa-cGLR2 knockdowns were mainly enriched in
pathways associated with the Toll and Imd signaling pathways,
as well as in metabolic pathways (Supplementary information,
Fig. S19 and Table S6). The enrichment of metabolic pathways is
consistent with recent reports on the non-canonical functions of
cGAS in metabolic regulation.67–69 Notably, knockdown resulted in
a 2.5- to 5.0-fold decrease in expression of the immune deficiency
gene imd and the NF-κB transcription factor gene Relish/REL2,
both of which are crucial for antiviral immunity.70–72 In addition,

Fig. 3 Insect functional genomics. We performed structural similarity searches against structural databases, including full-length structures
with well-characterized functions from the AFDB Swiss-Prot25 and PDB26 databases and curated domain structures from the CATH SSG5
database.27,28 a Distribution of cluster functional-annotation consistencies. Consistency within each cluster was calculated as the fraction of
functional annotations from the cluster representative that were also present in the list of functional annotations of all cluster members. b The
pie chart shows the composition of annotations for the 87,461 large clusters. Note that if the full-length structure-based annotation method
was not applicable, we then used the domain structure-based annotation method. This prioritization was made because the full-length
structure-based annotation method incorporates the entire protein structure. The stacked bars show the relationship between cluster
annotations and their taxonomic levels. All 7.61 million proteins from the 68,364 clusters annotated by either the full-length structure-based
method or the domain structure-based method are accessible via structures and sequences through The Insect Protein Structure (TIPS)
database (http://tips.shenxlab.com/). c Sankey visualization of organisms contributing to the functional annotations of structural clusters. The
numbers in parentheses represent the numbers of annotated clusters. d Three examples of cluster representatives (in yellow) functionally
annotated by the structure-based method, together with their best hits (in blue). These representatives were selected on the basis of their
various timescales and functional significances.
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both Aa-cGLR1 and Aa-cGLR2 were upregulated following infection
with either DENV2 or ZIKV compared with uninfected controls
(Supplementary information, Fig. S20).
We next individually expressed Aa-cGLR1 and Aa-cGLR2, as well

as three positive controls (human cGAS, fruit fly cGLR1, and cGLR2)

in HEK293T cells, following the method described in Holleufer
et al.64 Co-transfection with STING showed that human cGAS and
fruit fly cGLR2 increased IFNB1 activity, which is essential for the
innate immune response, whereas fruit fly cGLR1, Aa-cGLR1, and
Aa-cGLR2 did not (Fig. 5d). When transfected with STING and
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poly(I:C), a dsRNA analog, all five candidates upregulated IFNB1
(Fig. 5d; Supplementary information, Table S7). However, compar-
ison of IFNB1 activity with and without poly(I:C) showed a
significant increase for fruit fly cGLR1, Aa-cGLR1, and Aa-cGLR2 but
not for human cGAS or fruit fly cGLR2 (Fig. 5d). These results
indicate that mosquito cGLRs, like fruit fly cGLR1, can sense
dsRNA. Mutagenesis analysis identified four conserved residues
(F80, E81, Q175, and R253) in the Aa-cGLRs whose mutations
significantly reduced IFNB1 activity (Fig. 5e; Supplementary
information, Fig. S21a). Surface electrostatic modeling showed
that the structures of Aa-cGLR1 and Aa-cGLR2 might feature a
putative positively charged ligand-binding surface (Supplemen-
tary information, Fig. S21b). Liquid chromatography mass spectro-
metry (LC-MS) analysis revealed that Aa-cGLR1 produced the cyclic
dinucleotide (CDN) 2′3′-cGAMP, but the product of Aa-cGLR2
remains unidentified, despite screening for six typical CDNs
(Supplementary information, Fig. S21c). Furthermore, injection of
2′3′-cGAMP into yellow fever mosquitoes enhanced their antiviral
defense against dengue and Zika infections (Supplementary
information, Fig. S22). Taken together, these results demonstrate
that mosquito cGLRs play a crucial role in antiviral defense.

DISCUSSION
Advances in genomics and accurate structure predictions have
ushered in a new era, offering unprecedented opportunities to
deepen our understanding of protein function and evolution. In
this study, we harnessed publicly available genome and tran-
scriptome data to reconstruct a comprehensive and well-resolved
phylogeny of 4854 insects representing all 28 insect orders
(Fig. 1).31,73 From this comprehensive framework, we selected 824
representatives and created an atlas of predicted structures for
13.29 million proteins (Fig. 2), including 11.63 million new
proteins, to explore the relationships among sequence, structure,
and function in the insect tree of life.
A robust phylogenomics framework is essential for elucidating

the tempo and mode of insect evolution. Numerous phyloge-
nomics studies have provided valuable insights into the evolu-
tionary relationships among insects,2,74–81 but most of their taxon
sampling strategies focused on either all orders with a moderate
number of insects or on insects from specific orders.2,36,82–90 In
their landmark 2014 study, Misof et al.31 sampled all 28 insect
orders using 126 transcriptomes and genomes, providing a holistic
view of insect evolution. However, the past decade has seen
significant advances in high-throughput sequencing technologies,
greatly increasing the availability of genome and transcriptome
data. Using this wealth of data, we reconstructed a comprehensive
phylogeny of 4854 insects spanning all 28 orders, providing a
robust evolutionary framework. Our phylogeny not only signifi-
cantly expands species sampling but also improves resolution
relative to the landmark phylogeny of Misof et al.31 Recent
phylogenomics studies have resolved many branches in the tree
of life, but the resolution of problematic internodes — often
influenced by phylogenetic methods, gene selection, and
taxon choices, remains challenging, especially for contentious

branches.91,92 We observed that 23% of internodes exhibited
topological conflicts between concatenation- and coalescent-
based phylogenies. This may be attributed to gene-tree variation
due to various biological processes across loci (e.g., deep
coalescence, gene duplication and loss, and ILS) and gene-tree
estimation error due to inadequacy of the multispecies coalescent
model (e.g., recombination within a locus).93–95 Through large-
scale taxon sampling and advances in genome sequencing,
comprehensive phylogenomic sampling shows great potential for
reducing the number of contentious branches in the tree of life.
Although the use of protein structures rather than protein
sequences to detect homologs represents a significant advance,
the use of protein structures for reconstruction of phylogenetic
trees is still in its early stages.96 Nevertheless, future advances in
evolutionary models of protein structures and structural ortholog
inference may enable structure-based methods to surpass
sequence-based methods in phylogenomics.
The wealth of insect genome and transcriptome data not only

aids in reconstructing the insect tree of life but also serves as a
valuable resource for predicting protein structures. Recent
advances in accurate structure prediction21–24 have enabled
diverse applications. These include establishment of structural
databases such as the AlphaFold Protein Structure Database
(AFDB),25 the ESM Metagenomic Atlas (ESMatlas),23 AFESM
(AFDB + ESMatlas),38 and the Encyclopedia of Domains (TED),28

identification of novel protein families,17,19,20,97,98 exploration of
new genome editing tools,99 and discovery of fungal effectors.16

In particular, AlphaFold2 has substantially expanded the protein
structural space, contributing over 200 million predicted structures
to AFDB, including more than 0.5 million structures for expert-
reviewed proteins in Swiss-Prot.25 AFDB Swiss-Prot, together with
PDB26 and CATH,27,28 provides a highly precise resource for
protein functional annotations. In this study, we created an atlas of
over 13 million predicted protein structures from 824 representa-
tive insects spanning all 28 orders, then clustered this structural
universe. By structurally aligning our predicted structures with
those of proteins whose functions are well characterized, we
generated functional annotations for 7.61 million proteins (Fig. 3),
14% of which were not annotated by similar sequence-based
approaches. These annotations, mainly derived from well-
characterized non-insect proteins, reveal diverse functions,
including many not previously reported in insects, such as the
pore-forming toxin protein PirB47–49 and the eukaryotic genome-
editing endonuclease Fanzor.50–54 Therefore, we propose that
structure-based approaches may be considered a crucial strategy
for functional protein annotations in the future.
In addition to their utility in functional annotation, analyses of

protein structure are also effective for detecting remote homo-
logous proteins with dissimilar sequences but similar func-
tions.17–19,100–102 Using a sequence identity of < 0.2511–13 and a
structural similarity of > 0.5,56,57 we identified 750 million remote
homologous proteins from 12,308 distinct clusters and found that
many clusters could be traced back to ancient origins in the insect
tree of life (Fig. 4). These families of remote homologous proteins,
whose members share conserved structures and have similar

Fig. 4 Structural alignments reveal massive numbers of remote homologous proteins across the insect tree of life. a An example of a pair
of remote homologous proteins (or distantly related proteins) characterized by a sequence identity of < 0.25 and a structural similarity > 0.5.
These thresholds were chosen because sequence homology detection typically fails below 0.25 identity,11–13 whereas a structural similarity
above 0.5 suggests the presence of shared folds.56,57 b Dot plot of 12,308 distinct clusters containing remote homologous proteins. A total of
750 million instances of remote homologies from 12,308 clusters were identified. The x-axis depicts the cluster size, and the y-axis indicates
the number of insect species in each cluster. Each dot corresponds to a cluster, with its color indicating the percentage of remote homologies
in the cluster. c Top ten Gene Ontology (GO) terms of 12,308 clusters containing remote homologous proteins, focusing on high-level
categories of biological processes. Note that these GO terms are categorized at the same level, without overlapping. d Schematic
representation of our phylogenetic tree, showing major clades and internal nodes, together with the numbers of clusters containing remote
homologous proteins. The right panel shows three functionally significant examples of insect remote homologous proteins with divergent
sequences but conserved structures across different evolutionary timescales.
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functional annotations, are involved in a variety of biological
processes, such as immune responses, cell differentiation, and
circadian rhythms. Notably, all 824 insects examined encoded
putative cGLRs, critical components of antiviral immunity.66,103–106

Despite substantial sequence divergence, these putative cGLRs
formed a single structural cluster that included two functionally
characterized fruit fly cGLRs.64,65 Experimental analysis revealed
that cGLRs play a crucial role in the antiviral defense of Aedes
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aegypti, a vector of human arboviruses (Fig. 5). Comparisons of
mosquito cGLRs and vertebrate cGASs revealed that mosquito
cGLR structures are markedly similar to vertebrate cGAS structures,
including experimentally determined structures of human, mouse,
and pig cGASs, despite sharing very low sequence similarity
(Supplementary information, Fig. S23). This deep structural
conservation implies that these proteins may have an evolutio-
narily ancient function. Lastly, although structural and sequence
analyses revealed that mosquitoes lack a canonical STING, a recent
study has shown that cGLRs can exist without STING in some
metazoans.107 We propose that CDNs produced by Aedes
mosquito cGLR may signal through alternative proteins. For
instance, in bacterial CBASS systems,108 which share evolutionary
ancestry with the cGAS-STING pathway, CD-NTase (cGAS/DncV-
like nucleotidyltransferase) synthesizes CDNs that bind and
activate the Cap effector (CD-NTase-associated protein), triggering
an anti-phage response without STING involvement. Similarly,
mammalian proteins such as RECON109 and ERAdP110 can sense
bacterial CDNs and initiate anti-bacterial immunity independently
of STING. Therefore, identifying the protein(s) that interact with
cGLR-generated CDNs in mosquitoes would be an intriguing topic
for future research.
Although cGLRs and Mab21/Mab21-like proteins share some

degree of sequence homology,66,107 they differ in functional
characteristics. Early studies reported that Mab21 protein in
Caenorhabditis elegans and Mab21-like proteins in mice are
involved in developmental regulation.111,112 However, the func-
tional roles of Mab21/Mab21-like proteins in insects remain largely
uncharacterized. By contrast, as core components of the innate
immune pathway, cGLRs possess the ability to mediate antiviral
responses.64,66 In this study, we identified two Aedes aegypti
Mab21-like proteins, and multiple lines of evidence supported
their classification as cGLRs (Aa-cGLRs). These proteins not only
showed high structural similarity to two well-characterized
Drosophila cGLRs but also were functionally validated through
several findings: (1) they exhibited antiviral activity; (2) upon
stimulation with the dsRNA analog poly(I:C), they activated
expression of IFN-β1 in a STING-dependent manner; (3) LC-MS
analysis revealed that mosquito cGLR1 was capable of producing
2′3′-cGAMP; (4) injection of chemically synthesized 2′3′-cGAMP
into mosquitoes enhanced their resistance to viral infection. These
functional characteristics align with the criteria used to identify
Drosophila cGLRs in a previous study,64 further supporting the
immune functions of mosquito Mab21-like proteins. This discovery
not only broadens our understanding of cGLRs but also provides
valuable insight into antiviral innate immunity in mosquitoes.

However, the innate immune functions of Mab21/Mab21-like
proteins in other insects remain to be investigated and confirmed
experimentally. In addition, no detectable CDN signals were
observed when cGLR2 was heterologously transfected into
HEK293T cells. This result may stem from a combination of
factors, including insufficient sensitivity of CDN detection, low
protein expression efficiency in the heterologous expression
system, presence of endogenous 2′3′-cGAMP-degrading
enzymes,113,114 potential export of 2′3′-cGAMP,115 or generation
of uncharacterized CDN signaling molecules.
Despite its merits, our insect structural genomics study

encountered challenges with proteins that yielded very low-
confidence structural predictions. This issue is not unique to our
insect structural data; existing large-scale structure databases such
as AFDB, ESM Atlas, and BFVD also contain some proportion of
very low-quality structures. For example, 27% of the predicted
structures in the human proteome have very low confidence.116

There are multiple underlying causes, potentially including
uneven representation in training data for state-of-the-art predic-
tion tools,117 limited information within short sequences,40 and/or
the presence of intrinsically disordered regions in proteins.118

MATERIALS AND METHODS
Taxon sampling
Genome collection. To compile a dataset with extensive taxonomic
sampling as of October 11, 2023, we initially gathered publicly available
insect genome information, including species names, assembly accession
numbers, assembly release dates, and assembly levels, from 17 public
repositories (Supplementary information, Table S1), including FlyBase,119

NCBI,120 BIPAA, InsectBase2,121 i5k workspace,122 Ensembl,123 UCSC
Genome Browser,124 and NGDC.125 Next, for species with multiple
sequenced genomes, we retrieved only the genome that had the highest
assembly level and most recent release date. After filtering out assemblies
with completeness < 30%, we retained 1724 genomes (Supplementary
information, Table S2).

Transcriptome collection. To obtain transcriptome data, we used “Insecta”
as the search term in NCBI’s Sequence Read Archive (SRA) Browser (https://
www.ncbi.nlm.nih.gov/sra) to obtain basic information on species names,
SRA accession numbers, SRA sizes, sequencing strategies, and release
dates. For species without publicly available genomes, we selected the
dataset with the largest SRA size and the most recent release date. Paired-
end sequences were chosen over single-end reads when available. For
each species, we retrieved and decompressed the raw reads using the
prefetch and fastq-dump programs of the SRA Toolkit v2.10.7 (https://
github.com/ncbi/sra-tools). We then processed the raw reads by trimming
adapters with TrimGalore v0.6.10 (https://github.com/FelixKrueger/

Fig. 5 A notable case of remote homologs: cGLRs are structurally conserved but show marked sequence divergence across the insect tree
of life, with functional characterization in the yellow fever mosquito. Our study identified 12,308 structural clusters of remote homologs
with highly similar structures but markedly divergent sequences. Among these, Cluster 142 emerged as the most prevalent, containing
sequences from all 824 insect species examined. This cluster comprises 3056 proteins (1–18 per species), including two well-characterized
cGLRs (cGLR1 and cGLR2) from D. melanogaster.64,65 a Distribution of 3056 putative cGLRs across the tree of life for 824 insects. Branches are
colored according to their order names as depicted in Fig. 1. The inner circle shows the average sequence identity between fruit fly cGLRs and
those in each of the remaining 823 insects. The outer circle shows the average structural similarity between fruit fly cGLRs and those in each of
the remaining 823 insects. Gray bars indicate the number of putative cGLRs identified for each species. Representative structures are displayed
outside the circles. b Effect of knocking down two cGLRs (Aa-cGLR1 and Aa-cGLR2) on the prevalence of dengue and Zika viral infection (%) in
the yellow fever mosquito. These two mosquito cGLRs have not been reported previously. P values were calculated using a two-tailed Fisher’s
exact test. The viral infection intensity in knockdown yellow fever mosquitoes is shown in Supplementary information, Fig. S18. c Effect of
overexpressing Aedes aegypti cGLRs in Aedes albopictus C6/36 cells on dengue and Zika virus infections. The left panels display confocal images
of immunostained cells. The nuclei were stained with DAPI (blue). Viruses were stained with dengue virus antibody (D1-11) or Zika virus
envelope protein antibody (green). Yellow fever mosquito cGLRs were stained with anti-V5-tag antibody (yellow). The right panels present bar
graphs quantifying virus infection intensity in the overexpressing cells. Data are presented as mean ± SD. P values were calculated using a
two-tailed t-test. d Two yellow fever mosquito cGLRs sense poly(I:C), a dsRNA analog. IFNB1 (a critical component of the innate immune
response to infection) reporter activity in HEK293T cells transfected with each of three positive controls (human cGAS and fruit fly cGLR1 and
cGLR2) and two mosquito cGLRs, with STING (left panel), or together with poly(I:C) (a dsRNA analog) (right panel). Data are presented as
mean ± SD. P values were calculated using a two-tailed t-test. e Analysis of the activation of mosquito single-residue cGLR mutants in
HEK293T cells transfected with human STING and poly(I:C). The activation of each single-residue cGLR mutant was normalized to the mean
value of the wild-type (WT) activation. Data are presented as mean ± SD. P values were calculated using a two-tailed t-test.
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TrimGalore). Clean reads were used for de novo transcriptome assembly
with default parameters of Trinity v2.11.1.126 Putative proteins were
identified using TransDecoder v5.5.0 (https://github.com/TransDecoder/
TransDecoder) with a minimum open reading frame of 15 amino acids, and
the longest putative protein per gene was retained. After filtering out
assemblies with completeness < 30%, we retained 3130 transcriptomes
(Supplementary information, Table S2).

Assembly quality assessment. To evaluate the quality of publicly available
genomes and our newly assembled transcriptomes, we used BUSCO
v5.2.2.33 For genome assemblies, we used the genome mode option “-m
genome”, and for assembled transcriptomes, we used the transcriptome
mode option “-m transcriptome”. Each assembly’s completeness was
assessed on the basis of the presence or absence of a set of 1367
conserved, full-length BUSCO nuclear genes from 75 insect genomes in the
OrthoDB v10 database.127 We considered both single-copy full-length
genes and duplicated full-length genes as complete genes for the
assembly assessment.

Phylogenetic analyses
Given that BUSCO assignments do not depend on genome annotations
and have been widely used in studies involving insects,128 plants,129 and
fungi,130 we began construction of the phylogenomic data matrix with a
set of 1367 single-copy full-length BUSCO genes from 4854 insects and 10
Entognatha outgroups based on the BUSCO output folders “single_co-
py_busco_sequences”. We aligned the amino acid sequences for each
BUSCO gene using MAFFT v7.505131 with the options “--thread 8 --auto”
and trimmed the amino acid alignments using trimAl v1.4.rev15132 with
the options “-automated1 -colnumbering”. We excluded 543 BUSCO gene
alignments with a taxon occupancy (i.e., the percentage of taxa whose
sequences were present in the trimmed amino acid alignment) < 50% and
a trimmed alignment length < 150 amino acids. These filters resulted in a
data matrix that contained 4864 taxa, 824 genes, and 276,683 amino
acid sites.
We inferred the concatenation-based ML tree using IQ-TREE multicore

v2.0.7133,134 on a single computing node with 256 CPU cores and 2 TB RAM
under a single “LG + G4” model with the options “--runs 1 -T 240 -m
LG + G4 --ufboot 1000”, as 438 out of 824 genes favored “LG + G4” as the
best-fitting model. We ran five independent tree searches using five
different seeds to obtain the best-scoring concatenation-based ML tree.
We inferred the coalescent-based species phylogeny with ASTRAL-III
v4.10.2135,136 using the set of 824 individual ML single-gene trees. Finally,
we visualized the phylogenetic trees using iTOL v5.137

Protein structure prediction and structural clustering
Owing to the substantial computational burden of predicting structures for
all 4854 insect species, we selected a subset of insects for structure
predictions on the basis of our concatenated phylogenetic tree (Fig. 1). Our
selection process involved three criteria: First, we ensured taxonomic
diversity by representing a wide range of clades and avoiding bias toward
specific groups. Second, we excluded species with long branch lengths.
Third, we selected species with high-quality data, as assessed by BUSCO
completeness. Consequently, we retained 824 representative insects that
were broadly distributed across the insect tree of life (Supplementary
information, Table S3). Initially, we retrieved 1.66 million predicted protein
structures for 114 insects from the AlphaFold Protein Structure Database
(https://alphafold.ebi.ac.uk/),21,25 with each species having > 10,000 struc-
tures. For the 11.78 million protein sequences of the remaining 710 insects,
we predicted their structures using a heterogeneous GPU cluster at the
Center for Engineering and Scientific Computation (CESC) at Zhejiang
University. This cluster comprised an NVIDIA Tesla H800 (80 GB RAM), H100
(80 GB RAM), and V100 (32 GB RAM). To ensure computational tractability,
we restricted our analysis to 11.63 million protein sequences (~98.7% of
the 11.78 million proteins) with lengths ranging from 16 to 2000
amino acids.
The structure of each protein sequence was predicted using ESMFold,23

a fast and comparably accurate structural prediction method. Specifically,
we used Hugging Face transformers v4.35.2 to run the esm.pretraine-
d.esmfold_v1 model for prediction, with the remaining parameters left at
their default values. As a result, we obtained 13.29 million predicted
protein structures, including 11.63 million newly generated in this study
and 1.66 million publicly available from the AlphaFold2 database, from 824
insects across the insect tree of life.

To cluster this structural universe, we used Foldseek cluster
v9.427df8a17,37 with the following thresholds: minimum TM-score of 0.4,
minimum query and target coverage of 70%, E-value= 0.001, and
sensitivity of 7.5. The parameters used were --threads 250 -s 7.5
--cluster-mode 0 -c 0.7 --tmscore-threshold 0.4 -e 0.001 --cluster-reassign
1. In addition, we clustered 527,789 structures with well-characterized
functions from the Swiss-Prot database using the same methodology. This
analysis revealed high functional consistency within the structural clusters,
with a median value of 91%. These results indicate that structurally similar
proteins are very likely to exhibit functional similarity.

Examination of three protein properties
The prediction confidence value for a given predicted protein structure
was calculated as the average of the pLDDT scores for all residues, and its
length was determined by the total number of residues. To assess the level
of disorder in a protein, we first used flDPnn to predict disordered residues,
identifying those with a predicted disorder score > 0.3.138 We then
classified the proteins into three levels based on the method described by
Deiana et al.139:

(i). Intrinsically disordered protein: a protein in which more than 30%
of residues are predicted to be disordered.

(ii). Protein with intrinsically disordered regions: a protein with fewer
than 30% disordered residues overall but which contains at least
one segment of more than 30 consecutive disordered residues.

(iii). Ordered protein: a protein with fewer than 30% disordered
residues and no segments of more than 30 consecutive disordered
residues.

Analysis of structural similarity within a cluster
We used two structural similarity metrics — LDDT and TM-score — for
each structural cluster, following previous studies.17,38 For a given cluster,
we first performed pairwise alignments between cluster members using
the Foldseek structurealign module with the options “-a -e INF --threads
120”. We then used the Foldseek convertalis module to customize the
output format with the parameters “--format-output query,target,eva-
lue,lddt,alntmscore”. Lastly, we calculated the average LDDT and TM-score
of all member-to-representative alignments per cluster.

Functional annotations
To obtain functional annotations for each structural cluster, we performed
structural similarity searches against structural databases with highly
precise functions: AFDB Swiss-Prot25 and PDB26 for full-length structure-
based annotation, and CATH27,28 for domain structure-based annotation. If
the full-length structure-based annotation method was not applicable, we
then used the domain structure-based annotation method. This is because
the former takes into account the entire protein structure.

(i). Full-length structure-based annotation: we searched each cluster
member against full-length structures in AFDB Swiss-Prot and PDB
using the Foldseek easy-search module with the parameters “--max-
seqs 10000 -s 9.5 -e 0.001 -c 0.4 --alignment-type 2 --cov-mode 0”.

(ii). Domain structure-based annotation: using the TED pipeline as
described by Lau et al.28 we identified protein domain boundaries
using Chainsaw,140 Merizo,141 and UniDoc,142 retaining consensus
domains (≥ 2 predictor agreement). Consensus domains were
assigned to 31,574 structures in existing CATH Structural Similarity
Groups at 5 Å (SSG5), where each SSG5 is a cluster representative for
CATH domains that superpose within 5 Å, using the Foldseek easy-
searchmodule with the parameters “-s 10 --cov-mode 5 --alignment-
type 2 -e 0.108662 -c 0.366757 -a”. Assignments to superfamily (H-
level) or fold (T-level) were determined using cutoffs from Lau et al.
(E-values 0.019000 and 0.108662, coverages 0.366757 and 0.786333,
and TM-scores 0.560000 and 0.416331, respectively). We found that
59.6% of the representatives from all large clusters with at least 10
members exhibited a single structural domain, whereas the
remaining 40.4% consisted of two or more structural domains.

We investigated whether sequence-based methods could capture our
proteins annotated by structure-based methods. For proteins annotated by
the full-length structure-based approach, we performed sequence-based
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searches against full-length protein sequences from the AFDB Swiss-Prot
and PDB databases using the MMseqs2 v17.b804f easy-search module.41

This was performed in the same manner as the full-length structure-based
annotation. For proteins annotated by the domain structure-based
approach, we performed sequence-based searches against sequence
domains in Gene3D assigned through structures,143 using InterProScan
v5.66-98.0144 with the parameters “-dp -appl Gene3D -f TSV -T tmp”.

Assessment of cluster functional-annotation consistency
For structural clusters annotated by the full-length structure-based
annotation method, we calculated the fraction of functional annotations
from the cluster representative that were also present in the functional
annotation lists of all cluster members. For structural clusters annotated by
the domain structure-based annotation method, following the strategy
outlined in a previous study,17 we determined the fraction of correctly
matched CATH domains for all member-to-representative pairs. True
positives were defined as pairs of CATH domains in the same clan.
Functional-annotation consistency was then calculated as the proportion
of true positives within the cluster.

Identification of remote homologous proteins
For each structural cluster, we performed an all-vs-all sequence alignment
of all its members using MMseqs align with the options “--threads 10
--alignment-mode 3 -e inf --comp-bias-corr 0”. In addition, we performed
an all-vs-all structural alignment of its members using Foldseek structure-
align with the same options. The Convertalis module in MMseqs and
Foldseek was used to customize the output format. To identify remote
homologous protein pairs, we used a sequence identity threshold of < 0.25
and a structural similarity threshold of > 0.5. These thresholds were chosen
because sequence-based homology detection typically fails below an
amino acid identity of 0.25,11–13 and a structural similarity score > 0.5 is
indicative of shared structural folds.56,57

Functional validation of two yellow fever mosquito cGLRs
Gene silencing in mosquitoes. DNA templates were PCR amplified with T7
promoter-flanked primers for mosquito LOC5570128 (Aa-cGLR1) and
LOC5570126 (Aa-cGLR2) (Supplementary information, Table S8) and used
to synthesize dsRNA in vitro with the MEGAscript RNAi kit (Thermo
Fisher Scientific). For mosquito microinjection, 138 nL of dsRNA solution
(3 μg/μL) was injected into the hemocoel of 3-day-old female mosquitoes
using a Nanoject III microinjector (Drummond). The injected mosquitoes
were allowed to recover for 2–3 d before performing a blood meal. The
gene-silencing efficiency was assessed by qPCR. Knockdown efficiency was
79% for Aa-cGLR1 and 70% for Aa-cGLR2.

Virus passage and infection assay in mosquitoes. DENV2 (New Guinea C
strain, AF038403.1) and ZIKV (ZJ03 strain) were passaged in C6/36 cells.
The supernatant was harvested, filtered through a 0.22-μm filter, separated
into 0.5-mL aliquots, and frozen at −80 °C. For virus infection assays in
mosquitoes, female Ae. aegyptimosquitoes cultured in paper cups covered
with mesh were starved for 12–24 h before blood feeding to ensure
engorgement. An infectious blood meal was prepared by mixing heat-
inactivated defibrinated sheep blood (Yuanye Biotech) with a virus
suspension at a ratio of 1:1. Mosquitoes were fed the blood meal using
Parafilm membrane–covered glass feeders that were warmed by 37 °C
circulating water. Fully engorged female mosquitoes were transferred to
new paper cups and maintained under standard conditions for further
investigation. The viral load in the whole body was determined at 10 d
post infection by qPCR.

Transfection of C6/36 cells. To overexpress Ae. aegypti cGLRs in C6/36 cells,
24-well tissue culture plates were seeded with 1 × 105 C6/36 cells per well.
After 24 h, each well was transfected with 400 ng of plasmids expressing
cGLR under the control of the poly-ubiquitin promoter or an empty vector.
The DNA and 1 μL Attractene Transfection Reagent (Qiagen) were
dissolved and mixed in 60 μL of RPMI-1640 medium. The mixture of
DNA and Attractene was incubated for 15min, then added dropwise to
cells. At 24 h post transfection, DENV2 or ZIKV was inoculated into treated
cells at MOI= 1.

Quantification and immunostaining of virus in C6/36 cells. At 48 h post
virus infection, C6/36 cells were collected, and virus infection loads were
quantified by qPCR. To detect virus infection by immunostaining, the virus-

infected cells were fixed with 4% (m/vol) paraformaldehyde (Sigma) for
10min at room temperature, then blocked in Immunol Staining Blocking
Buffer (Beyotime) for 60min. The cells were then incubated overnight with
Dengue virus antibody (Santa Cruz Biotechnology, 500-fold dilution), Zika
virus envelope protein antibody (GeneTex, 400-fold dilution), or anti-V5 tag
antibody (Abcam, 500-fold dilution) in blocking buffer. The cells were
washed with 1× PBST three times, incubated with Alexa Fluor 488 or 555
anti-mouse or anti-rabbit IgG (Beyotime, 200-fold dilution) for 1 h at room
temperature, and washed with 1× PBST three more times. For confocal
observation, cells were mounted with VECTASHIELD Antifade Mounting
Medium with DAPI (Vector Laboratories) for 5 min, and fluorescence
signals were visualized with a Nikon AXR confocal microscope system.

RNA sequencing. Total RNA was isolated from Aa-cGLR1- and Aa-cGLR2-
knockdown and control female Ae. aegypti adults using RNAiso Plus
(TaKaRa) and treated with DNase I (TaKaRa). Each treatment had three
replicates. RNA-seq libraries were constructed and sequenced on the
Illumina HiSeq 2000 platform to obtain paired-end reads. Trimmomatic
v0.39145 was used to remove low-quality reads and adapter sequences.
Clean reads were mapped to the reference genome using STAR
v2.7.10a,146 and featureCounts v2.0.1147 was used to count reads per
gene. DESeq2 v1.30.1148 was used to identify differentially expressed
genes, defined as those with an adjusted P-value ≤ 0.05 and at least a 1.5-
fold expression change. KEGG enrichment analysis was performed using
ShinyGO 0.80.149

Transfection of HEK293T cells. To test the induction of human STING by
cGLRs, 24-well tissue culture plates were seeded with 1 × 105 HEK293T cells
per well. After 24 h, each well was transfected with 400 ng of dual-
luciferase plasmid expressing firefly luciferase under the constitutive CMV
promoter and Renilla luciferase under the IFNB1 promoter, 100 ng
pcDNA3.1 plasmid expressing human STING, and 300 ng pcDNA3.1
expressing human cGAS, fruit fly cGLR1, fruit fly cGLR2, mosquito Aa-
cGLR1, mosquito Aa-cGLR2, or empty pcDNA3.1 plasmid to reach a total of
800 ng plasmid per well. The DNA was dissolved in 50 μL of DMEM, and
2 μL LipoFiter (Hanbio) was dissolved in another 50 μL of DMEM and
incubated for 5 min. The DNA and LipoFiter were then mixed and
incubated for another 20min before dropwise addition to cells. Three
hours later, cells were transfected with 300 ng of poly(I:C) (APExBIO) per
well using the LipoFiter reagent.

Mutation of single residues in cGLR proteins. To introduce a single F80, E81,
Q175, or R253 mutation into Aa-cGLR1 and Aa-cGLR2, mutagenesis PCR
was performed with pcDNA3.1 plasmids expressing Aa-cGLR1 and Aa-
cGLR2 as templates. In brief, PCR primers containing mutant DNA
sequences were used to amplify Aa-cGLR1 or Aa-cGLR2 with Phanta Max
Super-Fidelity DNA Polymerase (Vazyme). The PCR products were digested
with DpnI (NEB), purified with the Cycle-Pure Kit (Omega), and ligated with
the OK Clon DNA Ligation Kit II (Accurate Biology). The resulting plasmids
were verified by Sanger sequencing and used in the HEK293T
transfection test.

Measurement of luciferase activity in transfected cells. At 48 h post
transfection, HEK293T cells were lysed in 100 μL of 1× passive lysis buffer
(Promega) per well. Firefly and Renilla luciferase activity were sequentially
measured with 10 μL of lysate using the dual-luciferase reporter assay
system (Promega).

Identification of CDNs using LC-MS
CDNs were identified by LC-MS as described previously.64,150 In brief, for
CDN extraction from HEK293T cells ectopically expressing yellow fever
mosquito cGLRs in the presence of poly(I:C), the cells were collected in a
1.5-mL Eppendorf tube, to which 1mL of a precooled extraction reagent
(2/2/1 (v/v/v) methanol, acetonitrile, and water mixture) was added. After
centrifugation at 20,000× g for 15 min at 4 °C, the supernatant was
transferred to a new Eppendorf tube for evaporation. The residue was then
reconstituted with 1mL of 20mM ammonium carbonate and loaded onto
P-SAX SPE columns. Eluents were concentrated by evaporation, resus-
pended in 200 μL of 0.1% formic acid in water, and prepared for LC-MS/MS
analysis.
CDN production was analyzed by high-resolution LC-MS using an

UltiMate 3000 system (Thermo Fisher Scientific) linked to a Q Exactive HFX
Quadrupole-Orbitrap hybrid mass spectrometer (Thermo Fisher Scientific).
A 20-μL sample was injected into a Poroshell 120 AQ-C18 column (2.7 μm,
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2.1 × 150mm; Agilent Technologies) maintained at 40 °C. Mobile phase A
was 5mM ammonium carbonate in water, and mobile phase B was
acetonitrile with 0.1% formic acid. The HPLC gradient used was as follows:
0%–14% B in 6.0 min, 14%–25% B in 7.4 min, 25%–95% B in 8.0 min, 100%
B in 13.0 min, 100%–0% B in 13.1 min, and 0% B in 17.0 min, with a flow
rate of 0.300mL/min. Mass spectra were recorded using positive-ion full-
scan mode with m/z from 100 to 1500. Accurate mass measurement was
accomplished by the Orbitrap-MS with a mass resolution of 70,000. Source
parameters included a capillary temperature of 350 °C, maximum injection
time of 100ms, AGC target of 1E6, and S-lens RF level of 55. Target ions
were isolated using high-energy collision dissociation fragmentation, and
progeny ions were detected with dd-MS2 mode. The parent ion was
isolated with an isolation window of 1m/z unit and fragmented (resolution
= 17,500; NCE= 20, maximum injection time: 50 ms; loop count: 5; topN:
5). CDNs were identified by targeted mass analysis for exact masses and
formulae of the targeted CDNs. Xcalibur 4.4 (Thermo Fisher Scientific, CA)
software was used for equipment control and data acquisition.

Injection of 2′3′-cGAMP into mosquitoes
To test the effects of 2′3′-cGAMP (Biolog) in mosquitoes, 69 nL of 2′3′-
cGAMP solution (1mg/mL) was injected into the hemocoel of 3-day-old
female mosquitoes using a Nanoject III microinjector (Drummond).
Mosquitoes injected with 1× phosphate-buffered saline were used as
controls. The injected mosquitoes were allowed to recover for 3 d before
the DENV or ZIKV infection assay was performed. The viral load in the
whole body was determined at 10 d post infection by qPCR.

Statistical analyses
All statistical analyses and plots were performed in R v3.6.3 (R core
team 2021).

DATA AVAILABILITY
All gene alignments and gene trees are available on the figshare repository (https://
doi.org/10.25452/figshare.plus.25906339). Raw RNA sequencing data has been
deposited in GenBank under Bioproject ID: PRJNA1173893. Protein structures are
freely available on TIPS database (http://tips.shenxlab.com/). The web server offers
options for searching, visualizing, and downloading protein structures, as well as
accessing the comprehensive insect tree of life.
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