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PUBLIC SUMMARY

= A 464 whole-genome alignment resource including 110 de novo assembled genomes.
m Phylogenetic analysis reveals controversies in the topology.

m Differences in repetitive elements are associated with the habitats of teleost fishes.

m Deep phylogenomics identifies evolutionary constraints and genetics innovation.
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The remarkable morphological diversity and species abundance of teleost
fishes offer a valuable resource for understanding vertebrate evolution. In
phase | of the Fish10K project, genomes of 110 teleost species were
sequenced and assembled, filling gaps in 3 previously unrepresented or-
ders, and integrated with existing data to generate a 464 species whole-
genome alignment spanning all teleost orders—the largest such resource
beyond mammals and birds. Comparative analyses reveal distinctive
genomic features, including progressive genome compaction with short-
ened intron lengths relative to non-teleost ray-finned fishes. Analysis of
the transposable element (TE) landscape suggests a potential association
between TE expansion in teleost genomes and different habitats, as well as
the uniqueness of teleosts’ DNA-dominated transposon composition
among vertebrates. Genome-wide phylogenetic analyses refute the widely
accepted monophyly of “Siluriphysi” hypothesis and support the hypothe-
sis of a single origin of electroreception followed by secondary loss in Char-
aciformes. A refined evolutionary timeline of teleosts by whole-genome
alignment resource placed teleosts at ~253 million years ago, predating
the Permian-Triassic extinction, and delineates three diversification
phases punctuated by mass extinctions, challenging continuous post-
Cretaceous-Palaeogene acceleration models. This study establishes a
large-scale genomic database and a foundational whole-genome align-

ment resource, advancing insights into the landscape of teleost genomic
architecture and macroevolution.

INTRODUCTION

Teleost fishes, comprising almost more than 30,000 extant species, are the
most abundant vertebrate group. After more than 250 million years of evolution,
teleosts inhabit almost all waters on Earth—including the deep sea, polar re-
gions, and plateaus—and are outstanding representatives of vertebrate adap-
tive evolution. Since the first teleost draft genome (Fugu rubripes) was published
in2003," anincreasing number of genomes have been published, shedding light
on the genetic underpinnings of unique traits across various lineages. However,
the lack of a robust, whole-genome comparative context has been a critical
bottleneck, preventing a systematic investigation into the evolutionary
landscape.

With advances in sequencing technology, several large-scale genome con-
sortia with a core mission of producing genomes for thousands of species
have been launched, revolutionizing our understanding of these lineages. We
present here a foundational resource from phase | of the 10,000 Fish Genomes
(Fish10K) Project.? One hundred and ten newly sequenced teleost genomes are
reported here, filling in the gaps for three orders. A combination of short-read
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and long-read sequencing technologies are applied, enabling the sequencing of
rare and difficult-to-access species such as Alepocephalus agassizii and Polya-
canthonotus rissoanus from the deep sea.® By integrating these with publicly
available data, we have constructed the 464-way whole-genome alignment of
teleosts, a resource that constitutes the first of its kind for fishes and brings
the scope of genomic study for this group on par with other vertebrate lineages.

This comprehensive alignment allowed for the reconstruction of a robust
phylogenetic tree, resolving several long-standing evolutionary debates. Our
analysis also establishes a more precise evolutionary timeline, linking major
teleost diversification events to global extinction events. Furthermore, we char-
acterized evolutionary constraints and accelerations in the genome of teleosts
at single-base resolution and systematically identified genetic innovation ele-
ments. Ultimately, this study provides both a foundational resource for the
research community and novel insights into the genetic drivers of the incredible
success of teleosts. Also, this matrix of genomic level in large scale provides us
a chance to search the special genetic elements for important clades.

MATERIALS AND METHODS
Genome collection and library construction for sequencing and assembly

We collected a total of 464 teleost fish genomes spanning 44 taxa (orders or families), 3
of which had not been sequenced before. Among these genomes, 110 are newly assem-
bled, with an average scaffold N50 size of 4.22 Mb (Figure STA) and an average BUSCO
gene completeness of 86.38% (Table S2). The new assemblies from this project are
enumerated in Table S2 (listed under the “Newly sequenced” heading). The newly
sequenced genomes show similar (or better) contig N50 continuity (see Figure S1B) and
BUSCO completeness (see Figure S1C) to most of the previously published teleost fish ge-
nomes. Most of these genomes obtained from this study were sequenced at BGI, where
stLFR technology was used for library construction, and then assembled with Supernova
2.1% using default parameters.

In addition, we classified these 464 species into “freshwater” and “marine” categories
based on the salinity flags provided by FishBase (www.fishbase.org): fishes listed as occur-
ring exclusively in “fresh water” were assigned to the freshwater group, whereas those re-
corded only in “marine” were treated as marine; any taxa flagged as brackish or euryhaline
were excluded to avoid confounding effects. Detailed descriptions of these procedures are
available in the supplemental information.

Cactus whole-genome alignment

The reference-free whole-genome alignment for 467 (including 3 outgroup species,
coelacanth, bichir, and spotted gar) species was executed with Cactus (v.2.1.1)° on a clus-
ter of integrated HPC systems. The guide species tree required for Cactus was generated
by combining the maximum-likelihood BUSCO gene trees with ASTRAL-II software.® Each
of these gene trees was constructed using RAXML (v.8.2.12),” with 100 independent tree
searches and the "PROTGAMMAAUTO" substitution model (for further details, refer to
the supplemental information). To obtain a final MAF file, we converted the HAL format
alignment file using a parallelized version of the command “hal2maf” with the parameter
“—onlyOrthologs —noAncestors” and “Danio rerio" as the reference.

Selection analysis on whole-genome alignments

Neutral model construction. To measure evolutionary conservation or acceleration,
we first needed a neutral model to define the baseline rate of evolution for DNA that is
not under selective pressure. Following previous studies,*® we used ancestral repetitive el-
ements as our source for these neutrally evolving sequences. To minimize computational
effort, we used a dataset of 368 teleost species covering all 44 taxonomic units. We ex-
tracted the common ancestral sequences for these species and identified the repeated el-
ements using RepeatMasker (v.3.3.0).'° From these neutral regions, we randomly sampled
500,000 bases and used their corresponding MAF alignments as input to the phyloFit pro-
gram (PHAST v.1.556) to generate our neutral model.

Calculation of vation and leration scores. Based on the previously ob-
tained neutral model, we ran PhyloP to estimate conservation and acceleration scores. Phy-
loP scores represent log-coded p values for acceleration, and we converted these scores
into p values that were then converted into g values using the FDR correction method.
Any base with a g value less than 0.05 was considered significantly conserved or
accelerated.

Construction of concatenation-based and coalescent-based
phylogenies

For concatenation-based analyses using a single model, we used the GTR+F+R7 and
JTT+R6 models for whole-genome alignment supermatrix and protein supermatrix, respec-

tively, because it was the best-fitting model for most of whole-genome loci or gene trees. All
phylogenetic analyses were independently performed using IQ-TREE, v.2.3.6'" with 1,000
ultrafast bootstrap replicates and “-bnni” parameter.

For coalescent-based analysis, individual loci (from the whole-genome alignment data-
set) or gene trees (from BUSCO genes) were inferred using I1Q-TREE, v.2.3.6, with an auto-
matic detection for the best-fitting model with “-MFP” option using ModelFinder'? under the
Bayesian information criterion. For each locus or gene tree, the topological robustness of
each tree was evaluated by 1,000 ultrafast bootstrap replicates and “-bnni" parameter.

Given the comprehensive nature of the whole-genome dataset, which includes a larger
amount of genetic information compared with other datasets, the whole-genome ASTRAL-
11l (v.5.7.3)° analysis appears in our study as the main tree to provide a more robust and
accurate resolution for these nodes. The topological robustness was evaluated using the
local posterior probability (LPP).

Divergence time estimation

Divergence times were estimated using MCMCtree from the PAML package,'® which
required an input phylogeny. The input phylogeny was created by pruning, using ETE3,"*
a phylogenetic tree originally constructed from whole-genome information of 467 fishes.
This pruning process reduced the tree to 47 taxa (Table S16), ensuring representation
from all teleost fish orders (families) included in the original dataset. The MCMCtree anal-
ysis was calibrated using 19 soft-bound fossil calibrations (Table S17) that were carefully
reviewed and adjusted according to our fossil record and the International Chronostrati-
graphic Chart. We applied the HKY85 model of sequence evolution and executed 4 indepen-
dent runs with a burn-in phase of 100,000 iterations, sampling 10,000,000 times in each
run. Divergence times were visualized with FigTree software (http://tree.bio.ed.ac.uk/
software/figtree/) and compared using R's ggplot2 package.'® The results are presented
in Figure S5 (the order-level phylogenetic tree). Additional details are provided in the
supplemental information.

Diversity trajectory of fishes using fossil sampling data

Atotal of 13,194 fossil records of Actinopterygii were utilized, with 9,841 specifically per-
taining to Teleostei (Table S15). These data were sourced from the DeepBone database
(accessible at https://www.deepbone.org). We focused our analysis on the genus and spe-
cies levels, as they offer the most granular taxonomic information with adequate fossil ev-
idence. Data cleaning involved the removal of species with ambiguous names and fossil
records dating beyond the Silurian period due to their uncertainty. Rigorous manual verifi-
cation ensured data integrity, and any updates were reflected on the DeepBone website.

Subsequently, the refined dataset was categorized into four categories: stem-group Ac-
tinopterygii, non-teleost crown-group Actinopterygii, stem-group Teleostei, and crown-
group Teleostei. The non-teleost crown-group Actinopterygii includes data from
Acipenseriformes/Chondrostei, Holostei, Scanilepiformes, and the stem-group Neopterygii.
A subsample dataset was then generated by randomly selecting 90% of the data from each
category.

We determined the species’ origination and extinction time frames to calculate their ex-
istence intervals and mid-ages. The time frame from 500 million years ago (Ma) to the pre-
sent was partitioned into 10-million-year intervals, and each fossil was assigned to the
appropriate interval based on its mid-age. Using the divDyn package (v.0.8.2) in R, we
computed the genus/species richness for each major category, considering their taxo-
nomic units and designated time intervals. The resulting diversity curves were then plotted.

RESULTS AND DISCUSSION
A comprehensive comparative genomics resource covering all extant
teleost orders

In phase | of the Fish10K project, we strategically sequenced 110 new ge-
nomes, which represent 59.09% of extant teleost orders across a total of 44
taxa (37 orders and 7 unclassified families,'® Tables S1 and S2), filling gaps
for 3 previously un-sequenced orders and alleviates genomic scarcity in key
clades, thereby advancing comprehensive coverage of teleost diversity
(Figure TA). These genomes were sequenced using a combination of single-
tube long-fragment read (stLFR)'” and long-read sequencing technologies'®
(Table S2). The average scaffold N50, contig N50, and median BUSCO
completeness of these newly assembled genomes were 4.22 Mb, 288 kb,
and 95.17%, respectively (Table S2). These newly sequenced genomes are com-
parable in continuity and completeness to most published fish genomes
(Figures STA=S1C). Furthermore, integrating our dataset with 354 publicly
available teleost genomes resulted in a comprehensive dataset of 464 teleost
species, providing broad representation across all extant teleost orders
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alignment built with Cactus. The 110 newly sequenced species are marked with black circles.

(Table S2). A comparison of the genomic features of these 464 teleost species
with all published non-teleost ray-finned fish genomes revealed a gradual reduc-
tion in genome size during the evolution of ray-finned fishes (Figure S1D). Spe-
cifically, intron length showed a progressive shortening from the non-teleost
ray-finned fish to teleost. Notably, teleost exhibited significantly shorter introns
compared with other ray-finned fish groups, while exon length remained rela-
tively conserved across lineages (Figure STE; Table S3). These findings provide
important insights into the evolutionary patterns of genome architecture in ray-
finned fishes.

DNA transposons as the main component of transposable elements in
the genome of teleosts

We systematically characterized the distribution of transposable element
(TE) content in teleost fish (Figure STF). We further investigated the distribution
patterns of TEs in. The results revealed that the proportion of various TE com-
ponents in teleosts was significantly lower than in early ray-finned fish, which
may explain the genomic contraction observed in teleosts (Figure S1G). In addi-
tion, we further investigated the distribution patterns of TEs in different orders of
teleost (Figure STH; Table S4).

Among the three main branches,'® Notacanthiformes exhibited the highest
TE content (11.64%) within Eloposteoglossocephala. The Cypriniformes
(21.84%) exhibit the highest transposon content (Figure STH), representing a
major branch within freshwater fishes. To further explore the association be-
tween TEs and diverse aquatic habitats, we divided the 464 teleost species

into marine and freshwater groups. Our findings revealed that freshwater fish
exhibit significantly higher overall transposon content than marine fish
(Figure 2A), with notably increased DNA transposon (Figure S11). We further
investigated the positional preferences of TEs across different environmental
fish genomes, revealing that the proportion of genes containing TE insertions
is significantly higher in freshwater fish than in other groups (Figure 2B).
Comparative analysis of genomic features across different vertebrate lineages
revealed that DNA transposons constitute the most abundant transposon cate-
gory in teleost genomes. In contrast, LINE transposons dominate in cartilagi-
nous fish, amphibians, reptiles, and mammals, exhibiting a LINE/DNA trans-
poson ratio distinct from that observed in teleosts (Figures 2C and S1J).
Previous studies suggested that TE expansions correlate with adaptive evolu-
tion in fishes. For example, a DNA transposon insertion underlies the recurrent
gold-dark color polymorphism in Midas cichlids?®; Antarctic notothenioids re-
cruited LTR/LINE bursts for antifreeze-glycoprotein regulation?'; and lineage-
specific LTR expansions also coincide with alkaline-lake specialization in Leucis-
cus waleckii.”” Comparative studies of multiple genomes further indicate that
the transition from aquatic to terrestrial environments was accompanied by
an expansion of the LINE-CR1 superfamily and a higher proportion of DNA
transposons in freshwater fish compared with marine fish.”>?* By extending
our analysis to 464 teleost species, we find that (1) the content of TEs in ge-
nomes shows a potential association with the survival of teleost in different en-
vironments and (2) the TE landscape of teleost is fundamentally different from
the “LINE-dominant” paradigm that prevails in chondrichthyans, reptiles, and
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mammals (Table S4). Although these findings suggest a potential link be-
tween TE activity and environmental adaptation as well as evolution across
different vertebrate lineages, further comparative and phylogenetic analyses
are required to validate this hypothesis.

Evolutionary constraint and acceleration sites in the teleost genome

With Progressive Cactus® and 464 teleost genomes, we generated the largest
fish whole-genome alignment to date—spanning ~300 My and all 44 orders—
and the third largest for any vertebrate clade after mammals®® and birds®
(Figure 3A). This resource now furnishes the first genome-wide panorama of
teleost genomic architecture, underscoring their unique evolutionary path rela-
tive to other vertebrate lineages.

Based on our whole-genome alignment, we first identified 0.11 Gb of ances-
tral sequences in the teleost lineages that was lower than in mammals and
birds (Figure S2A). Long-term evolutionary conserved sequences are typically
subject to purifying selection and tend to retain conserved functions.”’
Genome-wide alignments have proved effective for identifying conserved
genomic regions in birds,® mammals,® and primates,”® thereby elucidating the
evolutionary significance of nucleotide changes. To identify and quantify such
conserved regions in fish, we performed the first large-scale, single-base-reso-
lution screen for constrained elements. We detected over 30 Mb of constrained
sites, corresponding to ~2% of the zebrafish genome (FDR < 5%), a proportion
lower than that reported for mammals and birds (Figure 3B). Previous studies
have shown that the evolutionary rates on microchromosomes and sex chro-
mosomes differ from those on autosomes in vertebrates.”>° To quantify the

extent of selective constraint across the fish genomes, we calculated the pro-
portion of constrained sites on each chromosome of zebrafish. Results indicate
that the proportion of individual constraint sites on different chromosomes in
zebrafish is lower than that of acceleration sites (Figure 3C). Chromosomes 4
and 18 exhibit the lowest and highest proportions of constraint sites, respec-
tively, with a 2-fold difference between them (Figures 3D and S2B). This pro-
nounced heterogeneity implies that different chromosomes experience distinct
selection.

To further explore the functional characteristics and variability of
genomic elements in teleosts, we constructed the contiguous accelerated
elements (CAEs) and contiguous constrained elements (CCEs) by linking
adjacent accelerated and constrained sites, respectively. Ultimately, we
identified 24,462 CCEs (Table S5) and 787 CAEs (Table S6), and the length
and number of CCEs are significantly higher than those of CAEs (Figure 3E).
Previous studies have shown that, although genes are commonly consid-
ered the most strongly constrained sequences, most constrained and
conserved regions are located in non-coding.® Our findings also support
the idea that the majority of constrained areas are located in non-coding re-
gion (Figure 3F). Furthermore, studies in both mammals and birds have
shown that highly conserved elements are enriched for transcriptional
regulation and organ development pathways.®° In the functional enrich-
ment analysis of CCEs in teleosts, we identified a consistent pattern: func-
tions are primarily associated with organ development (Figure 3G). This
suggests that constrained regions in vertebrates may often perform similar
functions during long-term evolution. We also examined the biological
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Figure 3. Evolutionary constraint and acceleration in teleost genomes (A) Species number used in different large-scale genome sequencing projects, including birds, mammals,
and fishes. (B) Proportion of constrained sites in teleost genomes versus other vertebrate lineages. (C) The proportion of accelerated sites is significantly higher than that of
constrained sites. (D) Proportions of constrained and accelerated sites across the 25 zebrafish chromosomes. Bubble size corresponds to the proportion. Dashed boxes highlight
the chromosomes with the highest and lowest ratios. (E) Contiguous constrained elements (CCEs) are significantly longer than contiguous accelerated elements (CAEs). (F)
Genomic locations of CCEs enriched in non-coding regions. (G) Functional enrichment summary. CCEs are associated with developmental processes.

functions underlying gene acceleration. Previous studies indicate that
these accelerated genes are linked to mammalian immunity, skin develop-
ment, and certain sensory capabilities.” Functional analysis of genes
harboring accelerated regions in teleosts revealed a preference for immune
functions (Figure S2C), consistent with patterns observed in other verte-
brate lineages.

Teleost-specific conserved elements drive adaptive evolution post
teleost genome duplication

Highly conserved elements (HCEs) are important genomic innovations in the
process of macroevolution and are crucial for the adaptive evolution of spe-
cies.”® % Whole-genome-wide comparisons have been instrumental in identi-
fying such elements across vertebrates.?>*' 3% A notable example includes
bird-specific conserved elements associated with feather and wing develop-
ment.”° By using whole-genome alignments across 464 fishes, we identified
28,878 teleost highly conserved elements (THCEs) (Figure 4A; Table S7).
Comparative analysis with four Holostei species genomes (Amia calva, Lepisos-
teus oculatus, Atractosteus spatula, and Lepisosteus osseus) identified 1,689
teleost-specific HCEs (TSHCES) conserved in >85% of teleosts (Figure S3A;
Table S8). Notably, in contrast to other vertebrates where conserved elements
are predominantly non-coding,®%° teleost TSHCESs exhibited an exon bias with
60% located in exonic regions (Figures S3B—S3D). The remaining non-coding

TSHCEs showed substantial overlap with ATAC-seq peaks but limited overlap
with TEs (Figure 4B), suggesting that they may retain regulatory potential
(Figure 4C).

Previous studies have indicated that conserved elements play pivotal roles
in shaping specific traits, often being under strong evolutionary constraint
and involved in crucial regulatory functions.’®?° By integrating zebrafish
multi-organ transcriptomes and ZFIN phenotypic data, we explored the role
of these conserved elements in teleost evolution. Functional analysis of
these conserved elements revealed association with genes expressed in
teleost organs, including the brain, pectoral fins, heart, and gills
(Figure 4D). Function enrichment further highlighted their preferential involve-
ment in nervous system development and fin morphogenesis (Figure 4E;
Table S9). Teleost fishes exhibit extensive morphological and ecological
diversification, driven by a long history of adaptive radiation. These novel
morphological features, such as the refined fin structures enhancing swim-
ming abilities and the evolution of the gas bladder, have played a pivotal
role in seizing new ecological niches and displaying phenotypic diver-
sity.2>°173% The emergence of lineage-specific elements has been proposed
as a key driver of morphological diversification during vertebrate evolu-
tion.?®78 Our findings suggest that some TSHCEs may be linked to genes
regulating teleost organ development and contributed to the evolution of line-
age-specific morphological traits in teleosts.
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The teleost-specific genome duplication (TGD) event® *' provided an
evolutionary context for investigating the origins of these conserved el-
ements. We extracted conserved non-coding elements (CNEs) from
THCEs and TSHCEs respectively to detect the impact of TGD events
on candidate regulatory elements. Notably, teleost-specific CNEs
showed significant enrichment (p < 0.05) within 15 kb of TGD-derived
genes compared with non-teleost-specific CNEs (Figures 4F and S3E),
indicating that TGD not only duplicated protein-coding genes but also
potentially facilitated the emergence of novel regulatory elements.
This coordinated expansion of both coding and regulatory components
demonstrates how whole-genome duplication could drive evolutionary
innovation through simultaneous reorganization of gene and regulatory
repertoires.

To explore the regulatory potential of TSHCEs, we examined a TSHCE
segment located upstream of the rfx4 gene (Figure 5A; Table S10). rfx4
controls dorsal and ventral midline formation in the neural tube, and its
loss-of-function mutants in zebrafish exhibit caudal neural defects,
impaired swimming, and swim bladder inflation failure.*® Those roles in
posterior neural development and motor coordination suggest that rfx4
may contribute to the evolution of axial patterning and swimming control
in teleosts.** Hi-C data analysis revealed that this rfx4-TSHCE segment in-
teracts strongly with the rfx4 gene, implying a regulatory relationship
(Figure 5B). Furthermore, ChlP-seq data identified enrichment of regulato-
ry chromatin marks at this locus (Figure 5C). To validate this functionally,
we constructed dual-luciferase reporter plasmids based on pGL3-Basic: a
control group (pGL3 vector), and two experiment groups (pGL3-871bp
and pGL3—871bp+TSHCE). The upstream region along (pGL3-871bp
construct) exhibited luciferase activity comparable with the control,
whereas inclusion of the TSHCE (pGL3-871bp+TSHCE) significantly
increased reporter activity by approximately 4.2-fold (two-sample Stu-
dent's t test, p < 0.05) (Figure 5D). Together, these results indicate that
the rfx4-TSHCE could act as a cis-regulatory element of rfx4. It may

have fine-tuned rfx4 expression during posterior neural development
and motor coordination, potentially contributing to teleost-specific adap-
tations in axial patterning and swimming efficiency, including modular
axial skeletons, reconfigured myomeres for enhanced propulsion, and ho-
mocercal caudal fins.**%

Whole-genome phylogenomics challenges the monophyly of
“Siluriphysi”

The evolutionary history of teleosts, characterized by rapid radiation
events and long-time divergences, requires phylogenomic approaches to
overcome the resolution limitations inherent to traditional molecular
markers.® Using whole-genome alignments from 464 species (comprising
3.18 Mb of orthologous sequences partitioned into 3,185 1-kb windows
and 1,000 BUSCO genes, Figure S4), we reconstructed a robust phylogeny
covering all ordinal-level lineages. Both concatenation and coalescent-
based methods yielded highly supported trees (average bootstrap value =
88.27%) (Figures S5A-S5D) and high topological consistency of
Robinson-Foulds distances (Figures S5E and S5F; Table S11) across all
methods. While 89% of internodes exhibited concordance, persistent con-
flicts remained within certain lineages (e.g., Otophysi; Figures 6A, 6B, and
S5A-S5D; Table S12). For these contentious nodes, we employed the
ASTRAL coalescent approach to reduce the effects of incomplete lineage
sorting.®2°

Our phylogenetic analyses provide novel insights into the relationships
among Gymnotiformes, Siluriformes, and Characiformes (Figures 6A-—
6C). Although the protein-coding sequence analyses support the mono-
phyly of Siluriformes and Gymnotiformes relationships (Table S12; Node
A in Figure 6 A), whole-genome coalescent analyses strongly suggest
an alternative topology placing Gymnotiformes as sister to
Characiformes-Siluriformes clade (bootstrap [BS] = 100%, local posterior
probability [LPP] = 1.0; Figures 6A and 6B), thereby challenging the current
consensus on Otophysi relationships (Figure 6B; Table S13). Polytomy
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tests further support a potential trifurcation among these orders
(Figure 6C). In addition, microsynteny analyses among Otophysi species,
based on 14,294 orthologous genes located in conserved microsynteny
blocks (zebrafish as the reference; Table S14) revealed that, while
37.12% of gene trees supported monophyly of “Siluriphysi,” approximately
60% contradicted this hypothesis (Figure S6). Quartet support tests
further confirmed phylogenetic instability within this clade. These conflict-
ing signals both in protein-based and genome-scale datasets challenge
the currently prevail view that Siluriphysi constitutes a monophyletic
group®®™*" (Figure 6B; Table S13). We also collected mitochondrial
genome data from 506 teleost species, covering all currently recognized
orders. Using 12 mitochondrial protein-coding genes, we reconstructed
a robust mitochondrial phylogeny. Notably, the mitochondrial tree
strongly supports our previously conclusions, particularly regarding the
challenges of monophyly of Siluriphysi (Figure S10).

Within the Otocephala clade, the monophyly hypothesis of Siluriphysi
(comprising Gymnotiformes and Siluriformes), originally proposed based on
morphological characteristics including the electroreception system,** " has
long been widely accepted. Although numerous molecular phylogenetic studies
have demonstrated frequent discordance between molecular data and morpho-
logical expectations, the monophyly of Siluriphysi has generally been main-
tained in traditional interpretations, from early single-locus analyses“ to recent
multiple genomic-scale loci,** ¢ primarily to conform to morphological predic-
tions. Nonetheless, some molecular phylogenetic studies (e.g., Figures S2, S4,
and S5 in Hughes et al.'s study, and in Near et al.'s and Melo et al.'s studies)®* *°
failed to support Siluriphysi monophyly. The limited molecular markers em-
ployed in these studies resulted in inconsistent topological structures, preclud-
ing definitive challenges to the Siluriphysi hypothesis. Dornburg and Near®’
recently identified this issue as one of the unresolved questions in teleost evo-
lution. Our whole-genome alignments data yielded a maximally supported topol-
ogy (Figure 6) that provides conclusive evidence for the hypothesis proposed by

Dornburg and Near®” and Near and Thacker.'® This result presents a reappraisal
of how electroreception arose within Otophysi: either it evolved twice indepen-
dently in catfish and knifefish (convergent-evolution hypothesis) or was second-
arily lost in characiforms (ancestral-loss hypothesis). Beyond underlining the
need for denser taxon sampling, the study demonstrates that only comprehen-
sive genomic datasets can untangle the deepest branches of the teleost tree.

Genome-wide analyses uncover a novel model of teleost radiation
dynamics

Our study leveraged the largest teleost whole-genome alignment to date
(8.18 Mb of orthologous sequences, Figure S4) to precisely reconstruct the
teleost evolutionary timeline. Integrating paleontological and molecular clock
data, our analysis indicates that teleosts originated ~253 Ma, preceding the
Permian-Triassic extinction (251.9 Ma) (Figures 6A and S7). By the time of
Gondwana'’s breakup (~180 Ma), teleosts had already diversified into three pri-
mary clades: Osteoglossomorpha, Elopomorpha, and Clupeocephala (Figure
6A). Key mass extinctions—particularly the end-Permian (~250 Ma) and K-Pg
(~66 Ma) events—stimulated teleost radiation by vacating ecological niches
and reducing competition from non-teleost lineages (Figure 6D). The precise
molecular clock and lineage-through-time (LTT) analyses reveal three evolu-
tionary phases in crown teleosts: (1) rapid diversification (origin to ~170 Ma),
(2) a period of declining diversification (~170-66 Ma), and (3) post-K-Pg phase
beginning with a brief stabilization, followed by a transient resurgence in diver-
sification before decreasing to modern levels (Figures 7A, 7B, and S7). These
major inflection points coincide with two key mass extinction events, the end-
Permian (~250 Ma) and K-Pg (~66 Ma) (Figures 7C and S8).

Additionally, our results challenge previous hypotheses suggesting a contin-
uous increase in diversification rates following the K-Pg extinction.®®' In
contrast, both our LTT analysis (Figure 7A) and fossil evidence (fossil data
from 13,194 Actinopterygii records, including 9,841 Teleostei. Table S15) re-
vealed stable net diversification rates (rate through time) for crown teleosts
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After the Permian-Triassic extinction, life recovered
and diversified as Pangaea's formation enabled

throughout the Paleogene to early Neogene (60—23 Ma) with only minor fluctu-
ations (Figures 7B and S8). This pattern aligns with established phylogenetic
models®? and supports our three-phase evolutionary framework. Except for
the ecological opportunities created by mass extinction events (Figure 7B),
our refined evolutionary timeline reveals that teleost groups responded differ-
ently to temperature fluctuations: modern crown teleosts experienced markedly
suppressed diversification during episodes of global warming (Figures 7C
and S9).

CONCLUSION

The large-scale genomic dataset of teleost fish constructed in this study
provides robust support for systematic analysis of their evolutionary origins.
Through systematic analysis of 464 teleost genomes, we discovered that
DNA transposons have replaced LINE elements as the predominant compo-
nents in teleost genomes. This finding represents a significant divergence
from the traditional LINE-dominant pattern observed across most vertebrate
lineages. This novel feature of teleost genomes warrants further investigation
into its potential association with the adaptive radiation of teleosts. Further-
more, based on large-scale whole-genome alignment, we have for the first
time identified genome-wide constraint sites in teleost fish at single-base res-

The coastlines underwent continuous expansion,
providing various habitats for the spiny-finned fishes.

and conservation genomics, as well as cross-
species comparisons to uncover fundamental
patterns of vertebrate genome evolution and
adaptive radiation.

RESOURCE AVAILABILITY
Materials availability

This study did not generate new unique materials
or reagents. All experimental animal treatments in
this study have been verified and identified by taxo-
nomic experts and museum taxonomists according to the guidelines approved by the insti-
tuted Review Board of Bioethics and Biosafety (BGI-IRB, ethical permit ID: BGI-IRB
A20007-T1).

Data and code availability

® For data availability, all the data produced in this study are stored in publicly available
databases.

® The newly assembled genomes of 110 fishes from this study have been submit-
ted to the CNSA of CNGBdb (https://db.cngb.org/cnsa/): CNP0O004403.

® We also established a BioProject on NCBI specifically for depositing the fish ge-
nomes generated from the Fish10K project.

® The 110 newly assembled genomes generated from this research are also stored
in the NCBI database (https://www.ncbi.nlm.nih.gov/): PRINA1209848.

® The whole-genome HAL format alignment files for 467 fish species (including
3 non-teleost fishes as the outgroup) have also been submitted to the
CNSA database of CNGBdb: ftp://ftp.cngb.org/pub/CNSA/data5/CNP0004661/
Other/467-Bony-fish.hal and can be accessed using accession number
CNPO0004661; alternatively, users who wish to use this dataset can download
it with the following command: “wget -c ftp://ftp.cngb.org/pub/CNSA/datas/
CNP0004661/0ther/467-Bony-fish.hal".

® The Newick format tree file for all 467 fish species (including 3 non-teleost fishes
as the outgroup) can be found in the “Data S1-S4."
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® The database used for TE annotation in this study is available online (http://www.
repeatmasker.org).

® The protein sequences of the four fish species used for homology annotation are
sourced from the RefSeq database of NCBI and can be publicly accessed on NCBI
via the following accession numbers: Danio rerio (GCF_000002035.6), Lepisos-
teus oculatus (GCF_040954835.1), Takifugu rubripes (GCF_901000725.2), and
Rhincodon typus (GCF_021869965.1).

® For code availability, scripts used in this study, such as phylogenetic and gene
annotation pipelines, are available on the GitHub page of Fish10K (https://
github.com/BGI-Qingdao/fish10k).

® The scripts for running the Cactus software are based on the usage guidelines of
Cactus; the program used for the “hal2maf” conversion can be found in the sec-
tion “comparative genomic analysis” from Fish10K GitHub repository (https://
github.com/BGI-Qingdao/fish10k/).
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