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GRAPHICAL ABSTRACT

PUBLIC SUMMARY
◼ A 464 whole-genome alignment resource including 110 de novo assembled genomes.

◼ Phylogenetic analysis reveals controversies in the topology.

◼ Differences in repetitive elements are associated with the habitats of teleost fishes.

◼ Deep phylogenomics identifies evolutionary constraints and genetics innovation.
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The remarkable morphological diversity and species abundance of teleost 
fishes offer a valuable resource for understanding vertebrate evolution. In 
phase I of the Fish10K project, genomes of 110 teleost species were 
sequenced and assembled, filling gaps in 3 previously unrepresented or
ders, and integrated with existing data to generate a 464 species whole- 
genome alignment spanning all teleost orders—the largest such resource 
beyond mammals and birds. Comparative analyses reveal distinctive 
genomic features, including progressive genome compaction with short
ened intron lengths relative to non-teleost ray-finned fishes. Analysis of 
the transposable element (TE) landscape suggests a potential association 
between TE expansion in teleost genomes and different habitats, as well as 
the uniqueness of teleosts’ DNA-dominated transposon composition 
among vertebrates. Genome-wide phylogenetic analyses refute the widely 
accepted monophyly of “Siluriphysi” hypothesis and support the hypothe
sis of a single origin of electroreception followed by secondary loss in Char
aciformes. A refined evolutionary timeline of teleosts by whole-genome 
alignment resource placed teleosts at ∼253 million years ago, predating 
the Permian-Triassic extinction, and delineates three diversification 
phases punctuated by mass extinctions, challenging continuous post- 
Cretaceous-Palaeogene acceleration models. This study establishes a 
large-scale genomic database and a foundational whole-genome align

ment resource, advancing insights into the landscape of teleost genomic 
architecture and macroevolution.

INTRODUCTION
Teleost fishes, comprising almost more than 30,000 extant species, are the 

most abundant vertebrate group. After more than 250 million years of evolution, 
teleosts inhabit almost all waters on Earth—including the deep sea, polar re
gions, and plateaus—and are outstanding representatives of vertebrate adap
tive evolution. Since the first teleost draft genome (Fugu rubripes) was published 
in 2003,1 an increasing number of genomes have been published, shedding light 
on the genetic underpinnings of unique traits across various lineages. However, 
the lack of a robust, whole-genome comparative context has been a critical 
bottleneck, preventing a systematic investigation into the evolutionary 
landscape.

With advances in sequencing technology, several large-scale genome con
sortia with a core mission of producing genomes for thousands of species 
have been launched, revolutionizing our understanding of these lineages. We 
present here a foundational resource from phase I of the 10,000 Fish Genomes 
(Fish10K) Project.2 One hundred and ten newly sequenced teleost genomes are 
reported here, filling in the gaps for three orders. A combination of short-read 
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and long-read sequencing technologies are applied, enabling the sequencing of 
rare and difficult-to-access species such as Alepocephalus agassizii and Polya
canthonotus rissoanus from the deep sea.3 By integrating these with publicly 
available data, we have constructed the 464-way whole-genome alignment of 
teleosts, a resource that constitutes the first of its kind for fishes and brings 
the scope of genomic study for this group on par with other vertebrate lineages.

This comprehensive alignment allowed for the reconstruction of a robust 
phylogenetic tree, resolving several long-standing evolutionary debates. Our 
analysis also establishes a more precise evolutionary timeline, linking major 
teleost diversification events to global extinction events. Furthermore, we char
acterized evolutionary constraints and accelerations in the genome of teleosts 
at single-base resolution and systematically identified genetic innovation ele
ments. Ultimately, this study provides both a foundational resource for the 
research community and novel insights into the genetic drivers of the incredible 
success of teleosts. Also, this matrix of genomic level in large scale provides us 
a chance to search the special genetic elements for important clades.

MATERIALS AND METHODS
Genome collection and library construction for sequencing and assembly

We collected a total of 464 teleost fish genomes spanning 44 taxa (orders or families), 3 
of which had not been sequenced before. Among these genomes, 110 are newly assem
bled, with an average scaffold N50 size of 4.22 Mb (Figure S1A) and an average BUSCO 
gene completeness of 86.38% (Table S2). The new assemblies from this project are 
enumerated in Table S2 (listed under the “Newly sequenced” heading). The newly 
sequenced genomes show similar (or better) contig N50 continuity (see Figure S1B) and 
BUSCO completeness (see Figure S1C) to most of the previously published teleost fish ge
nomes. Most of these genomes obtained from this study were sequenced at BGI, where 
stLFR technology was used for library construction, and then assembled with Supernova 
2.14 using default parameters.

In addition, we classified these 464 species into “freshwater” and “marine” categories 
based on the salinity flags provided by FishBase (www.fishbase.org): fishes listed as occur
ring exclusively in “fresh water” were assigned to the freshwater group, whereas those re
corded only in “marine” were treated as marine; any taxa flagged as brackish or euryhaline 
were excluded to avoid confounding effects. Detailed descriptions of these procedures are 
available in the supplemental information.

Cactus whole-genome alignment
The reference-free whole-genome alignment for 467 (including 3 outgroup species, 

coelacanth, bichir, and spotted gar) species was executed with Cactus (v.2.1.1)5 on a clus
ter of integrated HPC systems. The guide species tree required for Cactus was generated 
by combining the maximum-likelihood BUSCO gene trees with ASTRAL-III software.6 Each 
of these gene trees was constructed using RAxML (v.8.2.12),7 with 100 independent tree 
searches and the “PROTGAMMAAUTO” substitution model (for further details, refer to 
the supplemental information). To obtain a final MAF file, we converted the HAL format 
alignment file using a parallelized version of the command “hal2maf” with the parameter 
“–onlyOrthologs –noAncestors” and “Danio rerio” as the reference.

Selection analysis on whole-genome alignments
Neutral model construction. To measure evolutionary conservation or acceleration, 

we first needed a neutral model to define the baseline rate of evolution for DNA that is 
not under selective pressure. Following previous studies,8,9 we used ancestral repetitive el
ements as our source for these neutrally evolving sequences. To minimize computational 
effort, we used a dataset of 368 teleost species covering all 44 taxonomic units. We ex
tracted the common ancestral sequences for these species and identified the repeated el
ements using RepeatMasker (v.3.3.0).10 From these neutral regions, we randomly sampled 
500,000 bases and used their corresponding MAF alignments as input to the phyloFit pro
gram (PHAST v.1.556) to generate our neutral model.

Calculation of conservation and acceleration scores. Based on the previously ob
tained neutral model, we ran PhyloP to estimate conservation and acceleration scores. Phy
loP scores represent log-coded p values for acceleration, and we converted these scores 
into p values that were then converted into q values using the FDR correction method. 
Any base with a q value less than 0.05 was considered significantly conserved or 
accelerated.

Construction of concatenation-based and coalescent-based 
phylogenies

For concatenation-based analyses using a single model, we used the GTR+F+R7 and 
JTT+R6 models for whole-genome alignment supermatrix and protein supermatrix, respec

tively, because it was the best-fitting model for most of whole-genome loci or gene trees. All 
phylogenetic analyses were independently performed using IQ-TREE, v.2.3.611 with 1,000 
ultrafast bootstrap replicates and “-bnni” parameter.

For coalescent-based analysis, individual loci (from the whole-genome alignment data
set) or gene trees (from BUSCO genes) were inferred using IQ-TREE, v.2.3.6, with an auto
matic detection for the best-fitting model with “-MFP” option using ModelFinder12 under the 
Bayesian information criterion. For each locus or gene tree, the topological robustness of 
each tree was evaluated by 1,000 ultrafast bootstrap replicates and “-bnni” parameter.

Given the comprehensive nature of the whole-genome dataset, which includes a larger 
amount of genetic information compared with other datasets, the whole-genome ASTRAL- 
III (v.5.7.3)6 analysis appears in our study as the main tree to provide a more robust and 
accurate resolution for these nodes. The topological robustness was evaluated using the 
local posterior probability (LPP).

Divergence time estimation
Divergence times were estimated using MCMCtree from the PAML package,13 which 

required an input phylogeny. The input phylogeny was created by pruning, using ETE3,14

a phylogenetic tree originally constructed from whole-genome information of 467 fishes. 
This pruning process reduced the tree to 47 taxa (Table S16), ensuring representation 
from all teleost fish orders (families) included in the original dataset. The MCMCtree anal
ysis was calibrated using 19 soft-bound fossil calibrations (Table S17) that were carefully 
reviewed and adjusted according to our fossil record and the International Chronostrati
graphic Chart. We applied the HKY85 model of sequence evolution and executed 4 indepen
dent runs with a burn-in phase of 100,000 iterations, sampling 10,000,000 times in each 
run. Divergence times were visualized with FigTree software (http://tree.bio.ed.ac.uk/ 
software/figtree/) and compared using R’s ggplot2 package.15 The results are presented 
in Figure S5 (the order-level phylogenetic tree). Additional details are provided in the 
supplemental information.

Diversity trajectory of fishes using fossil sampling data
A total of 13,194 fossil records of Actinopterygii were utilized, with 9,841 specifically per

taining to Teleostei (Table S15). These data were sourced from the DeepBone database 
(accessible at https://www.deepbone.org). We focused our analysis on the genus and spe
cies levels, as they offer the most granular taxonomic information with adequate fossil ev
idence. Data cleaning involved the removal of species with ambiguous names and fossil 
records dating beyond the Silurian period due to their uncertainty. Rigorous manual verifi
cation ensured data integrity, and any updates were reflected on the DeepBone website.

Subsequently, the refined dataset was categorized into four categories: stem-group Ac
tinopterygii, non-teleost crown-group Actinopterygii, stem-group Teleostei, and crown- 
group Teleostei. The non-teleost crown-group Actinopterygii includes data from 
Acipenseriformes/Chondrostei, Holostei, Scanilepiformes, and the stem-group Neopterygii. 
A subsample dataset was then generated by randomly selecting 90% of the data from each 
category.

We determined the species’ origination and extinction time frames to calculate their ex
istence intervals and mid-ages. The time frame from 500 million years ago (Ma) to the pre
sent was partitioned into 10-million-year intervals, and each fossil was assigned to the 
appropriate interval based on its mid-age. Using the divDyn package (v.0.8.2) in R, we 
computed the genus/species richness for each major category, considering their taxo
nomic units and designated time intervals. The resulting diversity curves were then plotted.

RESULTS AND DISCUSSION
A comprehensive comparative genomics resource covering all extant 
teleost orders

In phase I of the Fish10K project, we strategically sequenced 110 new ge
nomes, which represent 59.09% of extant teleost orders across a total of 44 
taxa (37 orders and 7 unclassified families,16 Tables S1 and S2), filling gaps 
for 3 previously un-sequenced orders and alleviates genomic scarcity in key 
clades, thereby advancing comprehensive coverage of teleost diversity 
(Figure 1A). These genomes were sequenced using a combination of single- 
tube long-fragment read (stLFR)17 and long-read sequencing technologies18

(Table S2). The average scaffold N50, contig N50, and median BUSCO 
completeness of these newly assembled genomes were 4.22 Mb, 288 kb, 
and 95.17%, respectively (Table S2). These newly sequenced genomes are com
parable in continuity and completeness to most published fish genomes 
(Figures S1A–S1C). Furthermore, integrating our dataset with 354 publicly 
available teleost genomes resulted in a comprehensive dataset of 464 teleost 
species, providing broad representation across all extant teleost orders 
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(Table S2). A comparison of the genomic features of these 464 teleost species 
with all published non-teleost ray-finned fish genomes revealed a gradual reduc
tion in genome size during the evolution of ray-finned fishes (Figure S1D). Spe
cifically, intron length showed a progressive shortening from the non-teleost 
ray-finned fish to teleost. Notably, teleost exhibited significantly shorter introns 
compared with other ray-finned fish groups, while exon length remained rela
tively conserved across lineages (Figure S1E; Table S3). These findings provide 
important insights into the evolutionary patterns of genome architecture in ray- 
finned fishes.

DNA transposons as the main component of transposable elements in 
the genome of teleosts

We systematically characterized the distribution of transposable element 
(TE) content in teleost fish (Figure S1F). We further investigated the distribution 
patterns of TEs in. The results revealed that the proportion of various TE com
ponents in teleosts was significantly lower than in early ray-finned fish, which 
may explain the genomic contraction observed in teleosts (Figure S1G). In addi
tion, we further investigated the distribution patterns of TEs in different orders of 
teleost (Figure S1H; Table S4).

Among the three main branches,19 Notacanthiformes exhibited the highest 
TE content (11.64%) within Eloposteoglossocephala. The Cypriniformes 
(21.84%) exhibit the highest transposon content (Figure S1H), representing a 
major branch within freshwater fishes. To further explore the association be
tween TEs and diverse aquatic habitats, we divided the 464 teleost species 

into marine and freshwater groups. Our findings revealed that freshwater fish 
exhibit significantly higher overall transposon content than marine fish 
(Figure 2A), with notably increased DNA transposon (Figure S1I). We further 
investigated the positional preferences of TEs across different environmental 
fish genomes, revealing that the proportion of genes containing TE insertions 
is significantly higher in freshwater fish than in other groups (Figure 2B). 
Comparative analysis of genomic features across different vertebrate lineages 
revealed that DNA transposons constitute the most abundant transposon cate
gory in teleost genomes. In contrast, LINE transposons dominate in cartilagi
nous fish, amphibians, reptiles, and mammals, exhibiting a LINE/DNA trans
poson ratio distinct from that observed in teleosts (Figures 2C and S1J). 
Previous studies suggested that TE expansions correlate with adaptive evolu
tion in fishes. For example, a DNA transposon insertion underlies the recurrent 
gold-dark color polymorphism in Midas cichlids20; Antarctic notothenioids re
cruited LTR/LINE bursts for antifreeze-glycoprotein regulation21; and lineage- 
specific LTR expansions also coincide with alkaline-lake specialization in Leucis
cus waleckii.22 Comparative studies of multiple genomes further indicate that 
the transition from aquatic to terrestrial environments was accompanied by 
an expansion of the LINE-CR1 superfamily and a higher proportion of DNA 
transposons in freshwater fish compared with marine fish.23,24 By extending 
our analysis to 464 teleost species, we find that (1) the content of TEs in ge
nomes shows a potential association with the survival of teleost in different en
vironments and (2) the TE landscape of teleost is fundamentally different from 
the “LINE-dominant” paradigm that prevails in chondrichthyans, reptiles, and 
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mammals (Table S4).23–25 Although these findings suggest a potential link be
tween TE activity and environmental adaptation as well as evolution across 
different vertebrate lineages, further comparative and phylogenetic analyses 
are required to validate this hypothesis.

Evolutionary constraint and acceleration sites in the teleost genome
With Progressive Cactus5 and 464 teleost genomes, we generated the largest 

fish whole-genome alignment to date—spanning ∼300 My and all 44 orders— 
and the third largest for any vertebrate clade after mammals26 and birds8

(Figure 3A). This resource now furnishes the first genome-wide panorama of 
teleost genomic architecture, underscoring their unique evolutionary path rela
tive to other vertebrate lineages.

Based on our whole-genome alignment, we first identified 0.11 Gb of ances
tral sequences in the teleost lineages that was lower than in mammals and 
birds (Figure S2A). Long-term evolutionary conserved sequences are typically 
subject to purifying selection and tend to retain conserved functions.27

Genome-wide alignments have proved effective for identifying conserved 
genomic regions in birds,8 mammals,9 and primates,28 thereby elucidating the 
evolutionary significance of nucleotide changes. To identify and quantify such 
conserved regions in fish, we performed the first large-scale, single-base-reso
lution screen for constrained elements. We detected over 30 Mb of constrained 
sites, corresponding to ∼2% of the zebrafish genome (FDR < 5%), a proportion 
lower than that reported for mammals and birds (Figure 3B). Previous studies 
have shown that the evolutionary rates on microchromosomes and sex chro
mosomes differ from those on autosomes in vertebrates.29,30 To quantify the 

extent of selective constraint across the fish genomes, we calculated the pro
portion of constrained sites on each chromosome of zebrafish. Results indicate 
that the proportion of individual constraint sites on different chromosomes in 
zebrafish is lower than that of acceleration sites (Figure 3C). Chromosomes 4 
and 18 exhibit the lowest and highest proportions of constraint sites, respec
tively, with a 2-fold difference between them (Figures 3D and S2B). This pro
nounced heterogeneity implies that different chromosomes experience distinct 
selection.

To further explore the functional characteristics and variability of 
genomic elements in teleosts, we constructed the contiguous accelerated 
elements (CAEs) and contiguous constrained elements (CCEs) by linking 
adjacent accelerated and constrained sites, respectively. Ultimately, we 
identified 24,462 CCEs (Table S5) and 787 CAEs (Table S6), and the length 
and number of CCEs are significantly higher than those of CAEs (Figure 3E). 
Previous studies have shown that, although genes are commonly consid
ered the most strongly constrained sequences, most constrained and 
conserved regions are located in non-coding.9 Our findings also support 
the idea that the majority of constrained areas are located in non-coding re
gion (Figure 3F). Furthermore, studies in both mammals and birds have 
shown that highly conserved elements are enriched for transcriptional 
regulation and organ development pathways.9,29 In the functional enrich
ment analysis of CCEs in teleosts, we identified a consistent pattern: func
tions are primarily associated with organ development (Figure 3G). This 
suggests that constrained regions in vertebrates may often perform similar 
functions during long-term evolution. We also examined the biological 
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functions underlying gene acceleration. Previous studies indicate that 
these accelerated genes are linked to mammalian immunity, skin develop
ment, and certain sensory capabilities.9 Functional analysis of genes 
harboring accelerated regions in teleosts revealed a preference for immune 
functions (Figure S2C), consistent with patterns observed in other verte
brate lineages.

Teleost-specific conserved elements drive adaptive evolution post 
teleost genome duplication

Highly conserved elements (HCEs) are important genomic innovations in the 
process of macroevolution and are crucial for the adaptive evolution of spe
cies.28–30 Whole-genome-wide comparisons have been instrumental in identi
fying such elements across vertebrates.23,31–33 A notable example includes 
bird-specific conserved elements associated with feather and wing develop
ment.29 By using whole-genome alignments across 464 fishes, we identified 
28,878 teleost highly conserved elements (THCEs) (Figure 4A; Table S7). 
Comparative analysis with four Holostei species genomes (Amia calva, Lepisos
teus oculatus, Atractosteus spatula, and Lepisosteus osseus) identified 1,689 
teleost-specific HCEs (TSHCEs) conserved in >85% of teleosts (Figure S3A; 
Table S8). Notably, in contrast to other vertebrates where conserved elements 
are predominantly non-coding,8,26 teleost TSHCEs exhibited an exon bias with 
60% located in exonic regions (Figures S3B–S3D). The remaining non-coding 

TSHCEs showed substantial overlap with ATAC-seq peaks but limited overlap 
with TEs (Figure 4B), suggesting that they may retain regulatory potential 
(Figure 4C).

Previous studies have indicated that conserved elements play pivotal roles 
in shaping specific traits, often being under strong evolutionary constraint 
and involved in crucial regulatory functions.28,29 By integrating zebrafish 
multi-organ transcriptomes and ZFIN phenotypic data, we explored the role 
of these conserved elements in teleost evolution. Functional analysis of 
these conserved elements revealed association with genes expressed in 
teleost organs, including the brain, pectoral fins, heart, and gills 
(Figure 4D). Function enrichment further highlighted their preferential involve
ment in nervous system development and fin morphogenesis (Figure 4E; 
Table S9). Teleost fishes exhibit extensive morphological and ecological 
diversification, driven by a long history of adaptive radiation. These novel 
morphological features, such as the refined fin structures enhancing swim
ming abilities and the evolution of the gas bladder, have played a pivotal 
role in seizing new ecological niches and displaying phenotypic diver
sity.23,31–35 The emergence of lineage-specific elements has been proposed 
as a key driver of morphological diversification during vertebrate evolu
tion.29,36–38 Our findings suggest that some TSHCEs may be linked to genes 
regulating teleost organ development and contributed to the evolution of line
age-specific morphological traits in teleosts.

Figure 3. Evolutionary constraint and acceleration in teleost genomes (A) Species number used in different large-scale genome sequencing projects, including birds, mammals, 
and fishes. (B) Proportion of constrained sites in teleost genomes versus other vertebrate lineages. (C) The proportion of accelerated sites is significantly higher than that of 
constrained sites. (D) Proportions of constrained and accelerated sites across the 25 zebrafish chromosomes. Bubble size corresponds to the proportion. Dashed boxes highlight 
the chromosomes with the highest and lowest ratios. (E) Contiguous constrained elements (CCEs) are significantly longer than contiguous accelerated elements (CAEs). (F) 
Genomic locations of CCEs enriched in non-coding regions. (G) Functional enrichment summary. CCEs are associated with developmental processes.
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The teleost-specific genome duplication (TGD) event36–41 provided an 
evolutionary context for investigating the origins of these conserved el
ements. We extracted conserved non-coding elements (CNEs) from 
THCEs and TSHCEs respectively to detect the impact of TGD events 
on candidate regulatory elements. Notably, teleost-specific CNEs 
showed significant enrichment (p < 0.05) within 15 kb of TGD-derived 
genes compared with non-teleost-specific CNEs (Figures 4F and S3E), 
indicating that TGD not only duplicated protein-coding genes but also 
potentially facilitated the emergence of novel regulatory elements. 
This coordinated expansion of both coding and regulatory components 
demonstrates how whole-genome duplication could drive evolutionary 
innovation through simultaneous reorganization of gene and regulatory 
repertoires.

To explore the regulatory potential of TSHCEs, we examined a TSHCE 
segment located upstream of the rfx4 gene (Figure 5A; Table S10). rfx4 
controls dorsal and ventral midline formation in the neural tube, and its 
loss-of-function mutants in zebrafish exhibit caudal neural defects, 
impaired swimming, and swim bladder inflation failure.43 Those roles in 
posterior neural development and motor coordination suggest that rfx4 
may contribute to the evolution of axial patterning and swimming control 
in teleosts.44 Hi-C data analysis revealed that this rfx4-TSHCE segment in
teracts strongly with the rfx4 gene, implying a regulatory relationship 
(Figure 5B). Furthermore, ChIP-seq data identified enrichment of regulato
ry chromatin marks at this locus (Figure 5C). To validate this functionally, 
we constructed dual-luciferase reporter plasmids based on pGL3-Basic: a 
control group (pGL3 vector), and two experiment groups (pGL3–871bp 
and pGL3–871bp+TSHCE). The upstream region along (pGL3–871bp 
construct) exhibited luciferase activity comparable with the control, 
whereas inclusion of the TSHCE (pGL3–871bp+TSHCE) significantly 
increased reporter activity by approximately 4.2-fold (two-sample Stu
dent’s t test, p < 0.05) (Figure 5D). Together, these results indicate that 
the rfx4-TSHCE could act as a cis-regulatory element of rfx4. It may 

have fine-tuned rfx4 expression during posterior neural development 
and motor coordination, potentially contributing to teleost-specific adap
tations in axial patterning and swimming efficiency, including modular 
axial skeletons, reconfigured myomeres for enhanced propulsion, and ho
mocercal caudal fins.44,45

Whole-genome phylogenomics challenges the monophyly of 
“Siluriphysi”

The evolutionary history of teleosts, characterized by rapid radiation 
events and long-time divergences, requires phylogenomic approaches to 
overcome the resolution limitations inherent to traditional molecular 
markers.8 Using whole-genome alignments from 464 species (comprising 
3.18 Mb of orthologous sequences partitioned into 3,185 1-kb windows 
and 1,000 BUSCO genes, Figure S4), we reconstructed a robust phylogeny 
covering all ordinal-level lineages. Both concatenation and coalescent- 
based methods yielded highly supported trees (average bootstrap value = 
88.27%) (Figures S5A–S5D) and high topological consistency of 
Robinson-Foulds distances (Figures S5E and S5F; Table S11) across all 
methods. While 89% of internodes exhibited concordance, persistent con
flicts remained within certain lineages (e.g., Otophysi; Figures 6A, 6B, and 
S5A–S5D; Table S12). For these contentious nodes, we employed the 
ASTRAL coalescent approach to reduce the effects of incomplete lineage 
sorting.8,26

Our phylogenetic analyses provide novel insights into the relationships 
among Gymnotiformes, Siluriformes, and Characiformes (Figures 6A– 
6C). Although the protein-coding sequence analyses support the mono
phyly of Siluriformes and Gymnotiformes relationships (Table S12; Node 
A in Figure 6 A), whole-genome coalescent analyses strongly suggest 
an alternative topology placing Gymnotiformes as sister to 
Characiformes-Siluriformes clade (bootstrap [BS] = 100%, local posterior 
probability [LPP] = 1.0; Figures 6A and 6B), thereby challenging the current 
consensus on Otophysi relationships (Figure 6B; Table S13). Polytomy 
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Figure 4. Tracing the evolutionary history and impact of TGD (A) Distribution of THCEs (teleost highly conserved elements) based on their alignment within respective genomes. 
The y axis denotes the number of species in which ≥70% of nucleotides in a THCE align. The x axis denotes the number of species in which ≤10% of a THCE align. Three groups 
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overlap between conserved elements and different types of regulatory elements. (D) Functional statistics of genes associated with teleost species conversed non-coding elements 
(TSCNEs), derived by integrating transcriptome and knockout experiment results from the ZFIN database (https://zfin.org/). (E) Presentation of the GO (Gene Ontology) enrichment 
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tests further support a potential trifurcation among these orders 
(Figure 6C). In addition, microsynteny analyses among Otophysi species, 
based on 14,294 orthologous genes located in conserved microsynteny 
blocks (zebrafish as the reference; Table S14) revealed that, while 
37.12% of gene trees supported monophyly of “Siluriphysi,” approximately 
60% contradicted this hypothesis (Figure S6). Quartet support tests 
further confirmed phylogenetic instability within this clade. These conflict
ing signals both in protein-based and genome-scale datasets challenge 
the currently prevail view that Siluriphysi constitutes a monophyletic 
group45–47 (Figure 6B; Table S13). We also collected mitochondrial 
genome data from 506 teleost species, covering all currently recognized 
orders. Using 12 mitochondrial protein-coding genes, we reconstructed 
a robust mitochondrial phylogeny. Notably, the mitochondrial tree 
strongly supports our previously conclusions, particularly regarding the 
challenges of monophyly of Siluriphysi (Figure S10).

Within the Otocephala clade, the monophyly hypothesis of Siluriphysi 
(comprising Gymnotiformes and Siluriformes), originally proposed based on 
morphological characteristics including the electroreception system,45–47 has 
long been widely accepted. Although numerous molecular phylogenetic studies 
have demonstrated frequent discordance between molecular data and morpho
logical expectations, the monophyly of Siluriphysi has generally been main
tained in traditional interpretations, from early single-locus analyses48 to recent 
multiple genomic-scale loci,49–56 primarily to conform to morphological predic
tions. Nonetheless, some molecular phylogenetic studies (e.g., Figures S2, S4, 
and S5 in Hughes et al.’s study, and in Near et al.’s and Melo et al.’s studies)54–56

failed to support Siluriphysi monophyly. The limited molecular markers em
ployed in these studies resulted in inconsistent topological structures, preclud
ing definitive challenges to the Siluriphysi hypothesis. Dornburg and Near57

recently identified this issue as one of the unresolved questions in teleost evo
lution. Our whole-genome alignments data yielded a maximally supported topol
ogy (Figure 6) that provides conclusive evidence for the hypothesis proposed by 

Dornburg and Near57 and Near and Thacker.16 This result presents a reappraisal 
of how electroreception arose within Otophysi: either it evolved twice indepen
dently in catfish and knifefish (convergent-evolution hypothesis) or was second
arily lost in characiforms (ancestral-loss hypothesis). Beyond underlining the 
need for denser taxon sampling, the study demonstrates that only comprehen
sive genomic datasets can untangle the deepest branches of the teleost tree.

Genome-wide analyses uncover a novel model of teleost radiation 
dynamics

Our study leveraged the largest teleost whole-genome alignment to date 
(3.18 Mb of orthologous sequences, Figure S4) to precisely reconstruct the 
teleost evolutionary timeline. Integrating paleontological and molecular clock 
data, our analysis indicates that teleosts originated ∼253 Ma, preceding the 
Permian-Triassic extinction (251.9 Ma) (Figures 6A and S7). By the time of 
Gondwana’s breakup (∼180 Ma), teleosts had already diversified into three pri
mary clades: Osteoglossomorpha, Elopomorpha, and Clupeocephala (Figure 
6A). Key mass extinctions—particularly the end-Permian (∼250 Ma) and K-Pg 
(∼66 Ma) events—stimulated teleost radiation by vacating ecological niches 
and reducing competition from non-teleost lineages (Figure 6D). The precise 
molecular clock and lineage-through-time (LTT) analyses reveal three evolu
tionary phases in crown teleosts: (1) rapid diversification (origin to ∼170 Ma), 
(2) a period of declining diversification (∼170–66 Ma), and (3) post-K-Pg phase 
beginning with a brief stabilization, followed by a transient resurgence in diver
sification before decreasing to modern levels (Figures 7A, 7B, and S7). These 
major inflection points coincide with two key mass extinction events, the end- 
Permian (∼250 Ma) and K-Pg (∼66 Ma) (Figures 7C and S8).

Additionally, our results challenge previous hypotheses suggesting a contin
uous increase in diversification rates following the K-Pg extinction.58–61 In 
contrast, both our LTT analysis (Figure 7A) and fossil evidence (fossil data 
from 13,194 Actinopterygii records, including 9,841 Teleostei. Table S15) re
vealed stable net diversification rates (rate through time) for crown teleosts 
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throughout the Paleogene to early Neogene (60–23 Ma) with only minor fluctu
ations (Figures 7B and S8). This pattern aligns with established phylogenetic 
models62 and supports our three-phase evolutionary framework. Except for 
the ecological opportunities created by mass extinction events (Figure 7B), 
our refined evolutionary timeline reveals that teleost groups responded differ
ently to temperature fluctuations: modern crown teleosts experienced markedly 
suppressed diversification during episodes of global warming (Figures 7C 
and S9).

CONCLUSION
The large-scale genomic dataset of teleost fish constructed in this study 

provides robust support for systematic analysis of their evolutionary origins. 
Through systematic analysis of 464 teleost genomes, we discovered that 
DNA transposons have replaced LINE elements as the predominant compo
nents in teleost genomes. This finding represents a significant divergence 
from the traditional LINE-dominant pattern observed across most vertebrate 
lineages. This novel feature of teleost genomes warrants further investigation 
into its potential association with the adaptive radiation of teleosts. Further
more, based on large-scale whole-genome alignment, we have for the first 
time identified genome-wide constraint sites in teleost fish at single-base res
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Figure 6. A reconstructed robust phylogeny 
covering all ordinal-level lineages by using whole- 
genome alignment dataset (A) The time-calibrated 
phylogeny of teleosts inferred from whole-genome 
alignments. Blue bars at nodes indicate the 95% 
confidence intervals for divergence times. (B) 
Competing phylogenetic hypotheses for the re
lationships within Ostariophysi based on different 
datasets. The whole-genome phylogenomics chal
lenges the monophyly of “Siluriphysi.” (C) Polytomy 
tests and the count of loci trees also support a po
tential trifurcation among these orders. (D) Estimated 
divergence times for all extant teleost orders. Blue 
boxes indicate an origin before the K-Pg extinction 
(66 Ma); red boxes indicate an origin after the 
extinction. (E) Paleomaps illustrating major geolog
ical events corresponding with the divergence of 
major teleost lineages.

olution and systematically characterized 
genome sequences specifically generated in 
teleosts. This provides a critical data founda
tion for understanding genomic evolutionary 
pressures in teleosts. We also constructed a 
comprehensive teleost phylogenetic tree and 
confirmed a new phylogenetic relationship be
tween the Gymnotiformes and Siluriformes, 
challenging the monophyly of the Siluriphysi 
clade. Furthermore, we systematically evalu
ated the evolutionary dynamics of teleost radi
ation through molecular clock estimation and 
fossil data.

The Fish10K project has produced a 
comprehensive genomic foundation to system
atically reconstruct teleost evolutionary history 
and decipher the genomic basis of their 
phenotypic diversity. These resources provide 
enduring value by enabling both species-spe
cific studies in areas such as trait evolution 
and conservation genomics, as well as cross- 
species comparisons to uncover fundamental 
patterns of vertebrate genome evolution and 
adaptive radiation.

RESOURCE AVAILABILITY
Materials availability

This study did not generate new unique materials 
or reagents. All experimental animal treatments in 
this study have been verified and identified by taxo

nomic experts and museum taxonomists according to the guidelines approved by the insti
tuted Review Board of Bioethics and Biosafety (BGI-IRB, ethical permit ID: BGI-IRB 
A20007-T1).

Data and code availability
• For data availability, all the data produced in this study are stored in publicly available 

databases.
• The newly assembled genomes of 110 fishes from this study have been submit

ted to the CNSA of CNGBdb (https://db.cngb.org/cnsa/): CNP0004403.
• We also established a BioProject on NCBI specifically for depositing the fish ge

nomes generated from the Fish10K project.
• The 110 newly assembled genomes generated from this research are also stored 

in the NCBI database (https://www.ncbi.nlm.nih.gov/): PRJNA1209848.
• The whole-genome HAL format alignment files for 467 fish species (including 

3 non-teleost fishes as the outgroup) have also been submitted to the 
CNSA database of CNGBdb: ftp://ftp.cngb.org/pub/CNSA/data5/CNP0004661/ 
Other/467-Bony-fish.hal and can be accessed using accession number 
CNP0004661; alternatively, users who wish to use this dataset can download 
it with the following command: “wget -c ftp://ftp.cngb.org/pub/CNSA/data5/ 
CNP0004661/Other/467-Bony-fish.hal”.
• The Newick format tree file for all 467 fish species (including 3 non-teleost fishes 

as the outgroup) can be found in the “Data S1–S4.”
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• The database used for TE annotation in this study is available online (http://www. 
repeatmasker.org).
• The protein sequences of the four fish species used for homology annotation are 

sourced from the RefSeq database of NCBI and can be publicly accessed on NCBI 
via the following accession numbers: Danio rerio (GCF_000002035.6), Lepisos
teus oculatus (GCF_040954835.1), Takifugu rubripes (GCF_901000725.2), and 
Rhincodon typus (GCF_021869965.1).
• For code availability, scripts used in this study, such as phylogenetic and gene 

annotation pipelines, are available on the GitHub page of Fish10K (https:// 
github.com/BGI-Qingdao/fish10k).
• The scripts for running the Cactus software are based on the usage guidelines of 

Cactus; the program used for the “hal2maf” conversion can be found in the sec
tion “comparative genomic analysis” from Fish10K GitHub repository (https:// 
github.com/BGI-Qingdao/fish10k/).
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