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Abstract

Horizontal Gene transfer (HGT) from bacteria has often led to Horizontal Gene Acquisition
(HGA), subsequently contributing to phenotypic innovation. Ants are interesting potential
targets for HGA because they host many mutualistic associations with vertically transmitted
symbionts, but the overall prevalence of HGA across the ants and other insect lineages
remains virtually unexplored. Here, we systematically screened the genomes of 163 ant
species and identified 497 HGA events of protein-coding genes, predominantly derived from
intracellular symbionts, in 85 species belonging to eight subfamilies. Apart from convergent
horizontal transfers of Wolbachia-derived ankyrin repeat proteins into the genomes of 45 ant
species, we identified dozens of other HGAs that likely offered adaptive innovations of
phenotypic functions, primarily mediating immune-system adaptations or facilitating nutritional
niche expansions. We provide in-depth characterizations of multiple clade- and species-
specific HGAs, some as old as 40 MY, consistent with strong evolutionary conservation. Our
study is the first of its kind in ants and considerably expands our general appreciation of the

evolutionary significance of HGA from bacteria to eukaryotes.

Keywords: Horizontal gene transfer, comparative genomics, social insects, bacteria,

endosymbionts
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Introduction

Horizontal gene transfer (HGT) between unrelated genomes is a key driver of evolutionary
change provided such random transfers result in horiziontal gene acquisition (HGA) that
natural selection can act on'™. HGT between prokaryotic species has been extensively
studied for the adaptive innovations it allowed, such as the spread of antibiotic resistance
across species boundaries®. While prokaryote HGT events are often reciprocal, there is
increasing evidence for HGT towards multicellular eukaryotes, primarily from bacteria, fungi,
or viruses® . These transfers are asymmetrical because very few eukaryote genes are known
to have become established in prokaryotes®. Owing to recent advances in genomics and
molecular biology, systematic comparative analyses of HGA in multicellular eukaryotes have
now become feasible'~'3. However, in such studies it is crucial to realize that HGA events are
functionally comparable to random macromutations and that they can only result in lasting
phenotypic effects when they become subject to natural selection. Genome-wide screens of
HGA in multicellular organisms should thus ask which of these elements are likely to have
been maintained by selection against a null-hypothesis of them having survived in multicellular
genomes as neutral or slightly deleterious acquisitions in finite populations subject to genetic
drift.

Until recently, bacteria-to-eukaryote HGT has been controversial'*, as bacterial
contaminations, ancestral genes lost from related extant lineages, or incorrect phylogenetic
inferences have posed challenges for the correct identification of such putative HGA events'®.
However, many eukaryotic HGAs have now been confirmed by rigorous follow-up experiments
and functional characterizations'®. For example, more than hundred candidate HGAs have
been identified in protists’~'® and at least 1,400 genetic elements from non-metazoan donors
have recently been identifed as part of insect genomes'2. Many such functional HGAs in
eukaryotes have also been shown to mediate nutritional and metabolic innovations®'"29, as

well as novel immune-system responses?'2* and defenses against parasitism?5-27.

Successful HGA requires integration of bacterial genetic material into the metazoan germline,
which implies that vertically transmitted endosymbionts were most likely to act as donors. Such
endosymbionts occur more commonly in some animal groups than in others, likely explaining
why HGAs occured more often in insects?® than in vertebrates?®?°, Vertically transmitted
endosymbionts such as Wolbachia or Blochmannia are widespread within the ants, an
ecologically highly diverse and exclusively social insect family with over 15,000 described

species. These obligate endosymbionts have been vertically co-transmitted with their ant
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hosts for millions of years®® which makes these intricate relationships obvious sources for HGT
events resulting in HGA. However, in-depth comparative studies to illucidate the prevalence

of HGA in ants are lacking.

In this study, we comprehensively searched for HGAs across 163 ant genomes that were
recently subjected to general analysis®', of which 120 were de-novo sequenced on a PacBio
platform. This large-scale approach extends previous coverage by at least an order of
magnitude, because HGAs have so far only been described in detail for two ant species, the
wood ant Formica exsecta®? and the heart-node ant Cardiocondyla obscurior®. In F. exsecta,
multiple putative genes encoding ankyrin repeat domain (ANK) proteins, DNA repair proteins,
and transposases have been identified as HGAs from Wolbachia®> while a HGA from
Blochmannia-like enterobacteria has been described for C. obscurior®®. Another recent study
across 218 insect genomes identified putative HGAs in 20 ant species, but no effort was made
to describe these in any detail'?. Here, we identify and characterize 497 HGAs across 85 ant
species, covering eight of the 17 extant ant subfamilies. Focusing on the most striking cases,
we further provide in-depth analyses of the potential impact of HGAs on adaptive evolution in

the ants.

Results

Large-scale horizontal gene acquisition from bacteria

To systematically identify HGA from bacteria to ants, we used a conservative approach,
favoring specificity (accepting false negatives) over sensitivity (avoiding false positives). We
screened 163 ant genomes from 12 subfamilies, including Amblyoponinae (3), Dolichoderinae
(6), Dorylinae (4), Ectatomminae (2), Formicinae (39), Leptanillinae (1), Myrmiciinae (3),
Mymicinae (77), Paraponerinae (1), Ponerinae (21), Proceratinae (4), and
Pseudomyrmecinae (2). After careful filtering and manual curation (see methods: Detection,
validation, and quality assessment of HGA candidates), we identified 497 high-confidence
HGA events of bacterial origin across 85 ant genomes (Fig.1A, Tab.S1A) belonging to eight
of the twelve investigated ant subfamilies. The highest HGA numbers were found in three
Myrmica species (M. scabrinoides, M. rubra, and M. angulata) and we failed to find any HGAs
in Atta (A. cephalotes, A. colombica) or Acromyrmex (A. ameliae, A. echinatior, A. lobicornis),
despite high-quality reference genomes and previously described prevalence of

endosymbionts®**3°, We were unable to identify high-confidence bacterial HGAs in the lower-
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quality genome assemblies of Leptanillinae, Proceratinae, Paraponerinae, and
Amblyoponinae, because all candidate HGA loci were excluded during filtering and manual
curation (see methods). However, the number of candidate HGAs in these lower quality
genomes before filtering was similar to the numbers in other more contiguous assemblies

(Fig.1A), suggesting that the prevalence of HGAs is similar across the ant subfamilies.

We used PCR and Sanger Sequencing to confirm a subset of the computationally predicted
HGA loci at the molecular level. Out of the 43 tested HGA candidate events, 36 could be
confirmed by PCR and Sanger Sequencing, while results for seven remained inconclusive
(Tab.S2). Additionally, we compared our list of identified HGAs with the few previously
reported bacterial HGTs in ants'2323% and found that several HGTs were re-identified in our
study (Tab.S3).

The 497 identified HGAs contained coding sequences (CDS) for 1,053 bacterial proteins
(Tab.S1B). Among these, genes coding for ANK proteins were most abundant, identified in 45
ant genomes from eight subfamilies and with broadly distributed sequence identity
percentages relative to their respective bacterial reference proteins (Fig.1B). We further
detected four clade-specific HGAs: (i) Cyclopropane-Fatty-Acyl-Synthases (CFA) and (ii)
Ribosomal RNA methyltransferases (MetA) in eight Formicini (Formicinae) species (Formica
and Iberoformica), (iii) Lysozymes (Lys) in 21 species belonging to two different clades in the
Myrmicinae, and (iv) N-Acetyl-muramicacid-6-P-etherases (MurNAc) in eight Camponotini
(Formicinae) species (Fig.1A,B). All clade-specific HGAs showed around 75% average
sequence identity with their closest bacterial reference sequence, consistent with adaptive
changes in HGA loci becoming fixed and being maintained by selection (Fig.1B), although
distributions did vary (see below). We also identified seven cases of HGA shared between two
or three not closely related species, of which two showed conserved synteny suggesting a

single origin (Fig.S1, Tab.S4). Finally, we detected 61 single-species HGAs (Tab.S1).

CDS lengths ranged from 150 to 10,000 bp, with 58 HGAs having lengths >6,000 bp. Out of
the 1,053 annotated CDS sequences, 384 were expressed (read counts >100 in RNAseq
analyses), consistent with these proteins being functional. Gene Ontology (GO) term analyses
highlighted enrichment in lipid biosynthesis, prokaryotic cell wall catabolism, bacterial cell wall

degradation, methylation, and nucleotide metabolism (Fig.S2).

Wolbachia endosymbionts (Alphaproteobacteria) were the most frequent source of HGASs,
accounting for 79% of the 497 identified loci in the ant genomes (Fig.1A,C).

Gammaproteobacteria (Blochmannia and related genera) contributed 10% (n=49), while
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Spiroplasma/Mycoplasma  (Mollicutes) were donors for 37 HGAs, followed by
Sphingobacteriia (n=9) and other, not further specified, bacteria (n=9, Fig.1C, Tab.S1). Ants
of the subfamily Myrmicinae showed high prevalences of Wolbachia-derived HGAs, along with
lineage-specific acquisitions of Spiroplasma and Cardinium (Sphingobacteriia) in
Temnothorax and close relatives (Fig.1A). The Formicinae and Dolichoderinae subfamilies
exhibited a greater diversity of bacterial HGA donors, with Enterobacteria (e.g. Sodalis,
Yersinia, or Blochmannia-like bacteria) contributing 25% across the Formicinae genomes and

51% across the Dolichoderinae genomes (Fig.1A, Tab.S1).

Ankyrin repeat genes: Convergent HGAs across many species but with unclear

functions

245 HGAs (49% of the 497 total) encoded one or multiple ankyrin repeat (ANK) proteins,
distributed across 45 ant species from eight subfamilies (Fig.1, Fig.S3). ANK HGA frequencies
ranged from one (in twelve ant species) to 42 and 64 in Myrmica scabrinoidis and Myrmica
rubra, respectively. Out of the 418 ANK protein CDS, 249 were expressed (read counts >100)
across 38 species from seven subfamilies. Notably, 80 of these 249 expressed ANKs were
found in the genus Myrmica, a significant overrepresentation of bacterial ANK repeats relative

to what is normal in ants (Fisher’s exact test, p<0.0001, odds ratio=7.31).

All ANK HGAs originated from Wolbachia, except for nine uncharacterized or fragmented
proteins with ANK domains that were predicted to have originated from Bacteroidetes or
Rickettsiales other than Wolbachia but were removed as putatively false positives during
filtering. Integrating information from Uniprot, we identified 19 different Wolbachia strains as
potential donors with numbers derived from specific Wolbachia strains ranging from 1-132
ANK CDS but without a clear pattern within single Wolbachia species or across host ant
species (Fig.1, Fig.S3, Tab.S1).

ANK HGAs could be partitioned into 21 UniRef homology clusters, varying in length from 189
to 4751 amino acids and also in domain architecture within and between ant species. Major
ANK clusters recurred broadly across host ant species and subfamilies suggesting ancient
origins without a discernible pattern (Fig.S3). ANK loci were often densely clustered within the
host genomes, indicating recurrent independent insertions of Wolbachia—derived gene sets.
The frequent expression of ANK insertions seems incompatible with a neutral scenario in
which rapid duplication and divergence would always be followed by degradation. On the other
hand, if ANK insertions would have straightforward adaptive roles, we would expect the extent
of their structural expression to be positively correlated with lack of degradation, i.e. with the

proportional identity with the (supposedly ancestral) bacterial reference proteins. We did not
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find such a positive correlation (Pearson correlation coefficient r=-0.029, p=0.55, Fig.S4). This
would be consistent with ANKs often having adaptive functions in gene regulation, but at

present this cannot be more than a conjecture.

Ancient orthologous HGAs

In-depth comparative analyses revealed four orthologous HGAs across at least four clusters
of related ant species (Fig.1), all but one of which were expressed (Tab.S4, S5, S6). These
orthologous HGAs showed conserved synteny, consistent with purifying selection acting to
preserve these regions, which comprised: (1) a bacterial lysozyme, derived from Wolbachia
and maintained independently in the ancestors of Carebara and Temnothorax and a number
of related genera (Fig.1, Fig.2A); (2) an N-Acetyl-Muramic-Acid-Etherase (MurNAc) originating
from Spiroplasma in all Camponotini (Fig.1, Fig.2B); and (3) a Cyclopropane-Fatty-Acyl-
Synthase (CFA Synthase) locus, derived from Enterobacteria and maintained in Formica and

its sister genus /beroformica (Fig.1, Fig.S6).

Bacterial lysozyme HGAs were present in 21 ant species from two distinct Crematogastrini
clades (Fig.1, Fig.2A, Tab.S5), and were all expressed with predicted transcripts containing a
5’-non-coding exon, consistent with the secondary emergence of gene regulatory structures
(Fig.S5). Further phylogenetic analyses characterized this HGA event in both ant clades as
having integrated the Wolbachia glycosyl hydrolase muramidase lysozyme gene (GH25) into
the ancestral ant genomes. Our analyses also revealed a secondary loss of this HGA in
Pristomyrmex punctatus (Fig.1, Fig.2A) and its independent insertion in the Carebara and
Temnothorax clades (Fig.2A). These findings were substantiated by absence of any synteny
between the Carebara and the Temnothorax insertions (Fig.2A), suggesting convergent
horizontal acquisitions of bacterial lysozymes in these ant clades 29-39 MYA and ca. 51 MYA,

respectively.

We further identified a conserved MurNAc HGA (murQ) originating from Mollicutes bacteria in
eight species of Camponotini (Fig.1, Fig.2B, Tab.S6), which was expressed in all eight
species. Synteny and phylogenetic analyses confirmed the single ancestral HGA transfer into
the ancestor of Camponotini 40-57 MYA (Fig.2B).

Lastly, we identified a horizontally transferred cfa gene (encoding a CFA synthase) shared by
eight species from the Formicini tribe. Phylogenetic analyses revealed a likely origin from
Sodalis-like enterobacteria and diversification into 87 cfa HGAs encoding 177 CDS sequences
with 20 full-length expressed CFA genes (Tab.S7, Fig.S6). Each species had five to ten CFA
synthases with lengths varying from short fragments to a full-length CDS (Tab.S7). Formica
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japonica showed the highest number of full-length cfa genes (n=5, all expressed), followed by
F. sanguinea (n=4, two expressed), and F. cf. japonica (n=3, all expressed). F. fusca, F.
exsecta, and F. cinerea all carried one complete and expressed cfa gene of 1,148 bp, while
Iberoformica subrufa, the most basal of the eight species, had two complete and expressed
CFA synthase sequences. Phylogenetic and syntenic relationships of the full-length CFA
synthase HGAs suggested a single evolutionary origin ca. 33 MYA, followed by a complex
evolutionary history with recurrent gene duplications, deletions, and/or translocations (Fig.S6,
Fig.S7).

Other HGAs in ant host genomes

Among the 75 remaining HGAs that were neither ANK loci, fragmented, nor ancestrally
conserved functional loci, we identified six HGA candidates for further investigation, because
they were all expressed and encoded full-length bacterial proteins of >65% sequence identity.
Five out of these six could be confirmed by PCR (Tab.S2, for Colobopsis sp. no DNA was
available). Two of these coded for proteins related to bacterial cell wall and membrane
biosynthesis functions: An enterobacterial D-alanine—D-alanine ligase (dd/2) (Fig.3A, Fig.S1)
conserved in three Formicoxenini species (Formicoxenus nitidulus, Harpagoxenus sublaevis,
Leptothorax acervorum), and a Wolbachia-derived UDP-N-acetyl-glucosamine-1-
carboxyvinyltransferase (murA) in Pheidole pallidula (Fig.3B). Additionally, four HGAs were
associated with metabolic pathways (Fig.3C-F): (i) a phenazine biosynthesis protein (PhzF) in
Liometopum microcephalum, (ii) an Aryl-sulfate sulfotransferase (ASST) in Colobopsis sp.,
(iii) a DNA helicase (uvrD) involved in DNA mismatch repair in Kalathomyrmex emeryi and two
Ponerinae (Hypoponera opacior, Euponera pilosior) and (iv) a Xanthine-guanine-
phosphoribosyltransferase in Cardiocondyla obscurior. Three of these were derived from
Sodalis-like endosymbionts of the Enterobacteriaceae family (Fig.3C,D,F) while the uvrD HGA
in K. emeryi, E. pilosior, and H. opacior originated from Wolbachia (Fig.3E). For some of these
HGAs (e.g. PhzF in L. microcephalum and murA in P. pallidula), gene expression patterns

suggested the presence of regulatory 5’ non-coding exons (Fig.3B,C).

The candidate set also included DNA helicase HGAs in two Ponerini species and in the
myrmicine ant K. emeryi (Fig.3E), which are likely to be three independent evolutionary events
because there was no synteny between these three HGA loci (Fig.S1). We found a higher
degree of homology between the E. pilosior and H. opacior sequences compared to the K.
emeryi sequence and any of the Wolbachia strains (Fig.3E) but, in general, this HGA shows
over 30 % divergence from the closest Wolbachia hit. The alternative interpretation of an

ancient origin of the uvrD HGA in the common ancestor of E. pilosior and H. opacior would
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imply convergent losses in at least twelve other Ponerinae species, which would be a much

less parsimonious scenario (Fig.1).

Finally, the HGA in C. obscurior, encoding a protein involved in the bacterial purine salvage
pathway, showed a highly conserved CDS with high expression levels (Fig.3F). This HGA has
already been reported in a study by Klein et al.®® and is likely derived from the intracellular

Enterobacteriaceae symbiont Candidatus westeberhardia cardiocondylae.

Discussion

In this study we systematically assessed bacteria-to-ant horizontal gene transfers and
identified 497 HGA loci encoding 1,053 genes in 85 ant species from eight subfamilies.
Despite revealing a rich functional and evolutionary diversity of HGAs, our results remain a
conservative estimate of the frequency of bacteria-to-ant HGTs and are thus likely to
underestimate the true prevalence of HGAs. The genomic and transcriptional signatures of
the analysed HGAs suggest functional and evolutionary significance, consistent with HGA-
driven adaptive innovations in ant biology. Particularly the secondary addition of 5
untranslated region (UTR) elements, upstream of the start codon, to a number of HGAs
suggests their post-HGA fine-tuning by natural selection processes. Based on our present
data, we can conclude that HGA has occurred regularily during ant evolution and that ensuing
HGA-dependent functional innovations were most commonly associated with immune system

processes or metabolic enrichments.

HGA events require intracellular host-symbiont association

It is too rarely made explicit that direct donor-recipient contact is a necessary condition for
bacterial HGTs to the host germline. This implies that mostly hosts with intracellular and
vertically transmitted symbionts can be expected to experience a certain frequency of
symbiont-mediated HGT. This explains in turn why we expect HGAs to be variably prevalent
in insects?®, but to be virtually absent in vertebrates?°?° and that HGAs, also in the present
study, were derived mostly from Wolbachia (Fig.1A,C), the most widely distributed maternally-
inherited intracellular symbiont of insects®. This finding aligns with previous studies showing
that Wolbachia sequences of considerable length have been transferred to the nuclear
genome of solitary insect hosts'?3237:38 The Drosophila ananassae genome even integrated
an entire genomic copy of its Wolbachia symbiont in its own genome3”-3. Bacteriophages such
as the temperate phage WO can mediate Wolbachia—derived HGAs, potentially enabling

incorporation of genetic material from different Wolbachia strains in the same host genome*°.
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Apart from Wolbachia, the intimate relationships of Blochmannia and Blochmannia-like
intracellular endosymbionts with e.g. Camponotus, Plagiolepis, Formica and Cardiocondyla
ants also provided opportunities for HGA. These have been documented in isolated ant
lineages previously*®*! but are now shown to likely characterize entire Formicinae clades.
Such HGAs from longterm coevolved endosymbiont lineages (e.g. Blochmannia app. 80 my)
might be important for the communication between hosts and these mutualists to ensure
longterm cooperation between partners.

We also discovered HGAs from Sodalis-like endosymbionts in the Formicoxenini and the
genus Liometopum (Fig.4A,C), despite such endosymbionts not occuring in extant populations
of these ants, suggesting they constitute remnants of past symbioses or that they relied on

other transmission routes.

The functional significance of bacterial HGAs in ants

HGAs of bacterial origin can obtain diverse functions in recipient insect genomes, e.g. affecting
body coloration, plant- or bacterial cell wall degradation, defensive functions, detoxification
capabilites, and male courtship'?®. In our study, HGAs often involved genes related to
metabolic and cell-wall related processes in bacteria. Targeted functional studies will be
necessary to determine the true function of these HGAs. For example, uvrD (a DNA helicase,
Fig.4E) and gpt (a Xanthine-guanine phosphoribosyltransferase of the purine salvage
pathway, Fig.4F) are functionally well characterized in bacteria but their HGA significance in

ant genomes remains obscure.

Despite these limitations, our analyses suggest that biological functions of ant HGAs often
relate to defenses against and resistance to pathogens, mostly via bacterial cell-wall
degradation (Fig.4). Key examples are the clade-specific Lysozymes in several Myrmicinae

species and the MurNAc etherases in Camponotini ants (Fig.2).

Lysozymes can also serve as a protection from pathogens by peptidoglycan cleavage
between N-Acetylglucosamine (NAG) and N-Acetylmuramic acid (NAM), while MurNAc
etherases act in similar ways directy on NAM*4, These HGAs might thus provide
antibacterial defense systems to the ants, killing pathogenic bacteria by cell wall degradation
(Fig.4). Remarkably, bacterial lysozyme HGAs have occurred independently also in diverse
fungi, plants, archaea, bivalves, and solitary insects and have led to, for example, the
generation of antibiotic GH25 muramidases in plants and archaea??244445  Disease defenses

are well documented to be a pervasive threat to ant colonies that has maintained selection for

10
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multilayer recognition and immune defense mechanisms, so the HGAs discovered here add

to a much broader spectrum of individual and social immune strategies*.

In contrast to lysozymes, the HGA of murQ genes has not been reported previously and is
potentially unique to the Camponotini ants. HGA-encoded murQ can convert N-acetylmuramic
acid-phosphate to N-acetylglucosamine-phosphate by cleavage of the lactyl residue. This can
then be further degraded, used in glycolysis, or directed into peptidoglycan de novo synthesis
and recycling*?4"48_ The murQ HGA has a strong adaptive potential in enhancing the ants’
immune defense by using this peptidoglycan-degrading enzyme to kill bacterial pathogens,
while leaving an endosymbiotic relationship with cell-wall deficient Spiroplasma, the

presumable HGA donor, unaffected*.

CFA synthases, such as those acquired by two sister lineages of Formicini, catalyze the
cyclopropanation of unsaturated fatty acids of bacterial membranes (Fig.5). In bacteria, this
function has been associated with adaptive stress responses to changes in pH, temperature,
and salinity®*-%*. CFA synthases were previously identified in eukaryotes such as plants and
Leishmania parasites®%3%%, and have presumably also been horizontally acquired from
bacteria®%-%, We found that most Formicini species have several expressed and likely
functional cfa gene copies and that full-length CFA synthases were conserved because they
had retained synteny. This suggests that CFA synthases emerged from a single ancient HGT
to the common ancestor of Formica and Iberoformica ca. 33 MYA®® with secondary
diversification by gene duplications and rearrangements (Fig.S3) coinciding with the adaptive
radiation of the genus Formica. Finally, the ddl2 HGA in three Formicoxenini species and the
murA gene in Pheidole pallidula might convey antibacterial functions as well, as both enzymes

are involved in peptidoglycan anabolism and catabolism?©.

HGA-mediated reinforcement of ant-bacteria symbioses

Our study markedly expands our knowledge of HGAs across the global ants, and in fact across
all insects. The most prevalent HGAs were ANK-domain proteins homologous to Wolbachia
ANK proteins, occurring in single- or multiple copies across 45 species from eight subfamilies,
frequently with high copy numbers in specific ant genomes (Fig.1A,C). ANKs consist of
relatively short, tandem repeat motifs which fold into structures mediating molecular
recognition via protein-protein interactions®?-°. They are involved in a diverse set of functional
host-symbiont interactions and may be employed by symbionts like Wolbachia to mimic or
manipulate host functions following infection of eukaryotic cells®®*°. In general, the

evolutionary history of ANK HGAs is difficult to infer accurately, due to frequent expansions

11
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and contractions of ANK domains within genes’, secondary modifications that are likely to

have affected many ANKs after their HGA in ant genomes.

The recurrent integrations of phylogenetically diverse Wolbachia ANK genes into ant genomes
suggest that a diverse set of Wolbachia strains have functioned as ANK donors in ants
(Fig.S3), similar to what is known from other insects’®"3. The general prevalence of ANK HGAs
in insects suggest that they may continue to serve manipulative Wolbachia interests. However,
it has been notoriously difficult to document that Wolbachia symbionts express reproductively
parasitic phenotypes in ants’?), so their ANK HGAs might also extend the finetuning of
mutualistic functions. The highly prevalent ANK HGAs remain enigmatic in many respects.
They are not deeply conserved (Fig. 1), which suggest that many of them may be selectively
neutral or even slightly deleterious for the ants acquiring them, consistent with only 49% being
phenotypically expressed. However, our somewhat ambiguous general correlative results
might also be consistent with ANKs often having adaptive functions in gene regulation, which
would be consistent with an earlier study in Nasonia wasps’™. The maintenance of bacterial
ANKs in animal genomes thus remain enigmatic, similar to humans and other vertebrates

whose genomes also harbor a plethora of ANK repeats”.

Similar to ANKSs, the Aryl-sulfate-sulfotransferase (ASST) detected in Colobopsis sp. (Fig.3D)
is known to be involved in the regulation of prokaryote-eukaryote interactions. In bacteria,
sulfurylated molecules mediate cell-cell and host-pathogen interactions, being especially
upregulated in bacterial pathogens such as Escherichia coli during host infection. However,
ASSTs are also implicated in numerous pathogenic processes, as well as in metabolic
pathways for detoxifying endogenous and exogenous compounds with phenolic functional

groups’*7s,

Evolutionary implications of HGAs in ants

Ants are one of the most diverse insect families worldwide. Their social family structures,
colony sizes and ecological niches vary enormously, and our study indicates that regular
HGAs from bacterial endosymbionts may have allowed a number of ant lineages to further
finetune their fit to particular ecological niches. This perspective would be consistent with
inferred HGA-mediated adaptations in other eukaryotes’®7’8. However, it is important to
emphasize that most HGAs become subject to genomic degradation and pseudogenization’®,
which was also the case in our present study which showed that > 65% of all HGAs were
fragmented and/or not phenotypically expressed. In that light it is actually striking our study
did recover rather numerous convincing cases of HGAs that likely mediate adaptive responses

to environmental challenge, and often with strong signatures of evolutionary conservation and
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secondary elaboration (e.g. the incorporation of introns and UTRs) over time. In that sense,
the fate of HGA events is the same as that of any other mutation in the genome - they are
most likely to persist and not degrade when they convey an adaptive benefit. Only after such
positive maintenance directly following HGA can secondary elaborations of new syntenic
sequences become part of broader gene regulatory networks that mediate complex

phenotypic traits, consistent with conjectures brought forward by Li et al'?.

The results reported here should encourage further research, both to extend coverage across
the ants (as the 163 GAGA-generated genomes represent just over 1% of the total number of
described ant species) and to probe HGA functionality in greater detail at the level of specific

tribes or genera.

Methods

Taxon sampling

The vast majority of all investigated ant genomes were sampled, sequenced and annotated
by the Global Ant Genomics Alliance3"®. This set included 145 genomes sequenced and
assembled by GAGA, as well as 18 previously published genomes (Tab.S9). Our total dataset
thus contained 163 species distributed across 99 genera (i.e. 29% of the 347 known genera),
from 12 out of the 17 extant subfamilies. These included Amblyoponinae (3), Dolichoderinae
(6), Dorylinae (4), Ectatomminae (2), Formicinae (39), Leptanillinae (1), Myrmiciinae (3),
Mymicinae (77), Paraponerinae (1), Ponerinae (21), Proceratinae (4), and
Pseudomyrmecinae (2). Twenty of the 163 ant genomes were obtained from short-read stLFR
(single-tube long fragment read) data, with the corresponding assemblies showing low
contiguity (light grey species names in Fig.1A). Only the remaining 143 genomes were PacBio-
sequenced and assembled and had sufficient contiguity to reliably identify HGA candidates.
For 15 of the 143 PacBio sequenced species, it was possible to obtain chromosome-resolved
genomes using Hi-C sequencing to aid the assembly (Tab.S9). Further information on all
genome assemblies, gene annotation, and analyses of genome assembly completeness is

provided in Vizueta et al®'.

Detection, validation, and quality assessment of HGA candidates

To systematically identify instances of bacteria-to-ant horizontal gene transfer, candidates

were predicted by an automated pipeline using a homology-based approach. The sequenced
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ant genomes were divided into sliding windows of 2 kb (with 500 bp overlap) and blasted
against curated prokaryotic and insect genome databases with mmseqs2®' to identify
homologous regions. The best blast hit was selected by evalue (-k7,7g) and bitscore (-k8,8gr)
for each sliding window. Bacterial and eukaryotic rRNAs in the ant genomes were annotated
with barrmap®?. GC content and coverage of sliding windows and complete scaffolds of target
genomes were calculated with minimap28, samtools®*, and bedtools®. Assembled genomes
were screened for bacterial scaffolds using previously calculated coverage information for
identifying bacterial contaminants, which were removed from the assembly before further
processing. The exact criteria to define and remove bacterial scaffolds, together with all other
information about the automated pipeline that we used can be found at
https://github.com/dinhe878/GAGA-Metagenome-LGT.

All individual sliding windows with a High-scoring Segment Pair (HSP) against the bacterial
database that did not overlap with a HSP from the insect database were identified as candidate
HGAs, after which any sequences less than 500 bp apart were merged into candidate loci for
further analyses. The automated HGT finder pipeline resulted in 13,664 potential HGA
candidates across the 163 investigated ant genomes, which were used as starting point for
downstream analyses. Detailed overview plots with multiple HGA-quality parameters were
produced for every predicted candidate locus, in addition to the standard files containing
sequence information (Figs.S8-S11, giving examples of analyses of selected HGA
candidates). Predicted HGA candidates were filtered further using a conservative approach to
systematically reduce false positives, caused by e.g.,, low-complexity regions,
missassemblies, or bacterial contaminations. Filtering was performed in R version 4.1.2 using

the packages data.table, dplyr, tidyr, tidyverse and stringr.

To assess appropriate filters for the whole dataset, predicted HGAs from seven randomly
selected GAGA genomes were evaluated manually. Parameter distributions were then plotted
for all candidate-HGAs to determine cut-off thresholds for removing false-positives (Fig.S12).
After that, filtering criteria were fixed for all candidate loci to yield an unbiased selection of high
quality HGA candidates. The automated filtering described above resulted in 1,149 HGA loci,
containing 7,348 HGA candidates across 134 genomes, which were subject to further manual
curation and prokaryotic gene annotation (Tab.S10). All these HGA candidates were
subsequently validated, both by inspecting alignments of raw sequencing data against the

predicted candidate loci and by PCRs followed by additional Sanger Sequencing.

Utlimately, we relied on multiple lines of evidence to avoid false-positives. First, the set of high-

quality HGAs that we end up defining, all share a high sequence identity with bacterial
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homologs, despite being unambiguously integrated into the assembled ant genomes. Second,
the emergence of introns, clear phylogenetic synteny conservation, and RNAseg-based
expression validation of several HGAs provided additional lines of evidence for the
evolutionary significance of bacteria-to-ant HGT. Third, in ant-clade-specific HGAs, we found
essentially the same HGA in multiple independently sampled species, providing strong
evidence for the integration, evolutionary conservation, and functionality of formerly bacterial
genes in ant hosts that might have allowed for the emergence of clade-specific adaptations.
However, manual evaluation of HGAs was also required, which confirmed that a dual
approach of combining automatic and manual filtering is likely to be the most reliable method
to detect HGAs in ants.

PCR and Sanger Sequencing of HGAs

Genomic DNA of 25 available GAGA samples was extracted using a Chelex protocol to verify
incorporation of detected HGAs into their respective ant genomes. PCR Primers were
designed with a length of 18 — 22 bp, Tm between 58 — 62 °C and high target specificity (i.e.,
no off-target binding sites) for all possible HGA candidates. Primer pairs were also required to
span the expected amplicon as a fragment of the predicted HGA CDS in combination with the
ant DNA in both up- and downstream directions of the HGA (Tab.S2). The amplification of
PCR products was verified using agarose gel electrophoresis. Correctly amplified PCR
products matching expected size were then sequenced using Sanger Sequencing technology
after which chromatograms were re-aligned to the reference genome to confirm HGA

presence within the ant genome.

Evaluation of border regions between ant DNA and bacterial HGA

Border regions between HGA and ant sequences were investigated to identify missassemblies
and chimeric bacterial-ant scaffolds. For this, available short stLFR and long PacBio reads
were mapped to their respective genomes after which reads overlapping a predicted candidate
region were extracted and counted. Read counts for 5’ and 3’ boundary regions were included
as filters for all candidates within the dataset. Candidates with less than two reads overlapping
the boundary between predicted ant DNA and bacterial DNA were considered missassemblies
and excluded. To expand the HGA boundaries appropriately and map reads to the HGA
candidates, the average read length distribution across all GAGA genomes, separated into
short-read assembled (single-tube long fragment read, stLFR) and long-read assembled
genomes (PacBio), was calculated. In total, three read count values were obtained: the
number of reads overlapping the start of the HGA candidate, reads overlapping the end of the
candidate, and reads covering full length of the HGA, including boundary expansion by 1000
bp (PacBio assembled genomes) or 25 bp (stLFR assembled genomes) in both 5’ and 3’
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direction. After filtering, clusters of HGA regions in close proximity were merged or divided
manually after visual inspection, informed by runs of homology to bacterial sequences
according to blast bitscores. Here, all HGA regions were split into single remaining HGA

candidate sequences.

Our strict filtering criteria led us to exclude the low-contiguity stLFR-based genome assemblies
at this point of the analysis as inspection of mapped short-read data did not allow for
conclusive discrimination between assembly artefacts and properly integrated HGA events.
The scripts used for filtering and obtaining HGA candidates are available in our GitHub

repository (https://github.com/janina-rinke/HGT in_ants).

Prokaryotic gene annotation and functional analyses

Protein-coding and non-coding genes were annotated for all high-quality HGA candidates,
using a combination of Prodigal®, Kraken 287, and DFAST®8. All high-quality HGA candidates
CDS sequences were then blasted against NR and NT databases, bacterial protein sequences
included in UniProt90, and TIGRFAM and COG databases. For DFAST we required a
minimum-length of 100 bp for all bacterial reference sequences while allowing the

metagenome option for incomplete genomes.

Examining gene completeness and identification of fragmented HGAs

To investigate gene completeness and identify fragmented, putatively non-functional HGAs,
we extracted start and stop codons of predicted coding gene sequences (CDS) from all
resulting DFAST files using SegKit®. Accordingly, parameters reporting query coverage
(q_cov), subject coverage of the bacterial reference (s_cov), and e-value were examined to
identify cases of incomplete or fragmented HGAs. By default, query sequences with a subject
coverage <75% were marked as partial hits by DFAST. We additionally used Geneious
Prime®° to visually inspect open reading frames (ORFs) and completeness of selected HGA
candidates. Our analyses concluded that several HGA regions had been too narrowly defined,
rendering many CDS of HGAs truncated. To complete such fragmental and undersized HGA
candidates resulting from our too conservative filtering, we extended all HGA loci by 1000 bp
at the 5’ and 3’ boundary and annotated again with DFAST. All reannotated sequences were
then intersected with the originally predicted CDS using bedtools® to make sure that we only
extended previously obtained loci. A summary covering both the original annotation and the
reannotation is provided in Tab. S1, which covers all identified HGAs.

Additionally, we integrated information from UniProt (retrieved with UniProtR®') to obtain
sequences from the closest bacterial homolog from UniProt90. This included gene ontology

(GO) terms, protein names and predicted bacterial reference taxa (Fig.S2, Tab.S1).
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We finally used RNAseq data available for 130 of the 163 studied ant species to assess gene
expression of the HGA loci. The RNAseq data covered different ant castes and developmental
stages, collected by the GAGA project Vizueta et al. (2024). First, the raw RNAseq reads were
aligned to the HGA genomic regions using STAR v2.7.2b% with stringent parameters only
allowing >99% identity and >90% alignment lengths (--outFilterMismatchNoverReadLmax
0.01 --outFilterScoreMinOverLread 0.9 --outFilterMatchNminOverLread 0.9). For each ant
species, we merged mapped reads from different samples using samtools® and retained only
uniquely mapped reads overlapping with predicted HGA genes. We finally estimated overall

gene expression for every candidate HGA and reported them as raw read counts.

Comparative genomic analysis of selected HGA candidates

We analysed in detail all remaining expressed HGAs (read count > 100), which had: i) < 80%
coverage of the annotated Uniprot hit (to reduce the possibility of fragmented or wrongly
annotated HGAs, while still considering different evolutionary trajectories), ii) at least 65%
identity with the identified bacterial donor sequence to ensure bacterial origin, and iii) a
complete ORF verified by the NCBI ORF finder. For these HGAs, we manually verified
completeness of each CDS by conducting BLAST searches, comparing ORFs, using the

GAGA annotations®' and incorporating RNAseq data.

Gene models of these HGAs were manually refined in Geneious, using transcripts obtained
with StringTie (default settings, Pertea et al., 2015) as guides. In cases where several exon-
intron structures were predicted, we used parsimony to manually select a single representative
model based on the RNAseq data. Synteny analyses were conducted for all candidate HGAs
occurring in narrow phylogenetic clades of ants to evaluate the conservation of the HGA
regions. For this purpose, every HGA locus was extended by 40 kb on each side after which
all ant genes and protein sequences within this flanking region were extracted. Minimap28?
was then used to conduct an all-vs-all alignment after which OrthoFinder® was used to
determine orthogroups across species. The extent of synteny was plotted with the package
gggenomes®™. Finally, the candidate HGA sequences were blasted against all GAGA ant
genomes to uncover additional HGA events that might previously have been excluded due to
our strict filtering criteria (Tab.S5-S7). Using identified clade-specific HGA sequences as
queries, we conducted a local blast against all GAGA genomes to uncover potential additional
HGA events which were previously excluded because of our strict filtering criteria. The
resulting blast hits were then again intersected with all HGA loci initially predicted by the
automatic pipeline using bedtools®®, which showed that these additional HGA events had

indeed been identified as candidate HGAs by the automated HGT finder pipeline, confirming
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that no HGA event was missed by that pipeline and that we may have filtered candidate HGAs
that were real in our aim to avoid false positives. We extracted the FASTA sequences for all
resulting intersected HGA candidates and ran DFAST again to annotate them. We also
obtained gene expression and synteny data again for all of these selected clade-specific HGAs

to complete the in-depth analyses.

We then performed phylogenetic analyses to infer the evolutionary origins of selected HGA
events. Datasets were generated from protein sequences obtained with DFAST and
homologous proteins (>5 best BLAST hits) were retrieved using NCBI blastp and searching
against the non-redundant (nr) database. These sequences were then aligned using MAFFT
with default options® and processed further to conduct Maximum likelihood phylogenies in IQ-
Tree®” using 100 bootstraps. Phylogenies were visualized and annotated using iTOL v4 % and
analyzed for rooting ambiguity. In particular, we checked whether bacterial and eukaryotic
sequences could be split into separate monophyletic groups similar to the approach used by
Irwin et al. (2021). The phylogenies were rooted on the branches leading to Caulobacter sp.
and Mesorhizobium sp. (Fig.2A) and on the branches leading to Catenibacterium mitsuokai,
Vibrio alginolyticus, and Xenorhabdus poinarii (Fig.2B). Detailed HGA analyses including
RNAseq expression, gene models, and overview plots can be found in separate markdown

files, as well as in summary tables for the clade-specific and other HGAs (Tab.S4-S8).

Data and Code Availability

All data and code, used for the detection and analysis of HGAs in this study are available from
GitHub and can be found in the repository “HGT in_ants” (https://github.com/janina-
rinke/HGT in_ants.qit) as well as under https://github.com/dinhe878/GAGA-Metagenome-

LGT (for the automatic HGT finder pipeline). A ReadMe file gives a detailed overview of all

files and scripts included in the folders.
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Figure 1. Phylogenetic distribution, prevalence, and origins of bacterial HGAs in ants.
886 A. Species phylogeny of the 163 analyzed ant genomes and overview information on
presence/absence and origin of the bacteria-to-ant HGTs detected by the automated HGT
888 finder pipeline. Background clade colors in the phylogeny specify different ant subfamilies.

The number of candidate HGA loci identified before manual curation and gene annotation (n
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= 1,148 loci harboring 7,348 putative HGA events) is indicated by red points at the branch tips.
Stacked bar plots next to the branch tips show the prokaryotic origin of HGAs as fractions.
The most prevalent donors are Wolbachia (light grey), followed by Blochmannia-like bacteria
(black), Spiroplasma/Mycoplasma (purple), Cardinium (dark green), and other bacteria
(turquoise). The outer circle indicates the presence/absence of HGA-encoded proteins, of
which ankyrin repeats (Ank, dark blue) were most abundant. Cyclopropane formic acid (CFA)
synthases (red) are restricted to the Formicini tribe, similar to RNA methyltransferases (MetA,
dark red). Lysozymes (Lys) were detected in Carebara spp., as well as in Temnothorax spp.
and closely related genera (pink), while N-acetyl-muramic acid etherases (MurNAc) were
detected only in Camponotini ants (orange). Other identified proteins are highlighted in light
blue (Tab. S1). Additional candidates, which were detected during in-depth analyses of clade-
specific HGAs (CFA, Lys, MetA, MurNAc) are not highlighted in the Figure, but mentioned and
described in the main text, as well as in Fig.2 and in Tab.S5-S7). Names of species with short-
read stLFR genome assemblies are printed in grey. B. Percentage identity of HGA loci with
their inferred bacterial donor proteins based on CDS sequences for the categories: Ank, CFA,
Lys, MetA, MurNAc, Other (cf. panel A). All conserved clade specific HGAs (CFA, Lys, MetA,
and MurNAc) had around 75% (range ca 60-90%) sequence identity with their inferred
bacterial donor sequence while ANKs and other (unspecified) HGAs that occurred across
many ant subfamilies had a broader range (20 — 100 %). C. Taxonomic distribution of bacterial
HGA donors in ants. We inferred the bacterial origin of the 497 identified HGA loci based on
their prokaryotic gene annotations. Wolbachia (Alphaproteobacteria) were detected as donors
in 79 % of the cases (n = 393), followed by Blochmannia-like Gammaproteobacteria (n = 49),
and Spiroplasma/Mycoplasma (Mollicutes, n = 37). Other bacterial donors were Cardinium (n
= 9) and a number of not further specified bacteria (n = 9, Tab.S1). Photo credits: Paraponera

clavate ©Global Ant Genomics Alliance; Carebara diversa ©Eduard Florin Niga.
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916  Figure 2. Representation of selected ancient orthologous HGAs. A. Phylogenetic tree and
synteny of lysozyme (Lys) loci incorporated in the genomes of two clades of Crematogastrini
918 ants, in Drosophila ananassae, and in the source bacteria. The phylogeny was rooted on the
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red triangle in the synteny on the right. Homologous regions are visualized by grey bars. B.

Phylogenetic tree and synteny of MurNAc genes incorporated in the genomes of Camponaotini

ants and their matching bacterial source sequences based on the best hits from NCBI BLAST.

The gene tree has been calculated with the protein sequences of all respective species and

was rooted on the bacterial branch leading to Catenibacterium, Vibrio, and Xenorhabdus.
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Figure 3. In-depth analysis of expressed HGAs other than those presented in Figure 2.

Six expressed and full-length HGAs were analyzed and illustrated in separate panels (A-F)
with a rooted phylogenetic gene tree including homologous bacterial proteins. RNAseq
coverage is visualized for each HGA locus with CDS regions shown in cyan. The putative
function of each HGA is illustrated at the bottom of each panel. The focal HGA proteins are
drawn in red and the associated Gene Ontology (GO) terms from incorporated UniProt data
are given in other colors: Biological Process (BP; blue), Cellular Component (CC; pink) and

Molecular Function (MF; green).
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Figure 4. Schematic representation of conserved bacterial HGAs in ants with functions
related to bacterial cell wall degradation. A bacterial cell wall consists of
peptidoglycan/murein, accompanied by a membrane with associated lipopolysaccharides.
The monosaccharide NAM occurs ubiquitously in the cell walls of gram-positive and gram-
negative bacteria, forming the backbone of peptidoglycan together with N-acetylglucosamine
(NAG). CFA Synthases are involved in the cyclopropanation of lipopolysaccharides,
associated with bacterial stress responses and were detected as HGAs in Formica ants.
Lysozymes cause a cleavage of peptidoglycan by acting on the bond between NAG and NAM
(conserved in Crematogastrini ants), while murQ genes encode N-acetylmuramic acid 6-
phosphate etherases (MurNAc etherases), which are bacteria-specific enzymes that can act

upon NAM itself (conserved in Camponaotini).

Supplementary Information

Figure S1. Synteny visualization of recurrent HGAs outside the clade-specific HGAs.

Figure S2. Gene Ontology Enrichment Analysis of all HGAs.

Figure S3. Number and variety of ANK HGA gene loci visualized across the GAGA ant
phylogeny.

Figure S4. Regression of ANK expression on % identity with bacterial reference proteins.

Figure S5. Lysozyme gene models inferred from StringTie.
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Figure S6. Gene Tree of full-length CFA synthases within the Formicini tribe together with
expression information.

Figure S7. Synteny visualization of all CFA synthases within the Formicini tribe.

Figure $8-S11. Example overview plots for several HGA candidates.

Figure S12. Parameters used for automated filtering of HGA candidates predicted by the HGT
finder pipeline.

Table S1. A. Details about the 497 distinct HGA candidate loci detected in this study, with
details about Ankyrin Repeat proteins (ANKSs), lysozymes, MurNAc etherases, and CFA
synthases, and the species-or clade-specific HGA loci identified. B. Details about the 1,053
CDS identified within the 497 HGA loci.

Table S2. Information about PCRs and Sanger Sequencing performed to validate HGA
candidates in ant genomes.

Table S3. Comparison of detected HGAs in this study with previously identified HGTs in past
studies covering 22 ant genomes.

Table S4. Synteny information about multiple other HGAs identified in ant genomes outside
the clade-specific HGAs.

Table S5. Information about clade-specific lysozyme HGAs occurring in 21 ant species.

Table S6. Information about clade-specific MurNAc HGAs occurring in Camponotini ants.

Table S7. Information about clade-specific CFA synthase HGAs identified in Formicini ants.

Table S8. Information about other HGAs used for in-depth analysis with expression
information.

Table S9. The examined GAGA genomes used as dataset for this study, including GAGA ID,
species information and sequencing method.

Table S10. Information about all 1,148 HGA loci containing 7,348 candidates predicted by the
HGT finder pipeline after automated filtering.
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