(Gl A)n GigaScience, 2025, 14, 1-6
gCIEN‘?{QE

DOI: 10.1093/gigascience/giaf124
Technical Note

OXFORD

GFFx: A Rust-based suite of utilities for ultra-fast
genomic feature extraction

Baohua Chen “'*?, Dongya Wu ~ “2* and Guojie Zhang =~ >*

tSchool of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China

2Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China

*Correspondence address. Dongya Wu, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China. E-mail:
wudongya@zju.edu.cn; Guojie Zhang, Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121,

China. E-mail: guojiezhang@zju.edu.cn

Abstract

Background: Genome annotations have become increasingly complex with the discovery of diverse regulatory elements and transcript
variants, posing growing challenges for efficient data querying and storage. Existing tools often show performance bottlenecks when
processing large-scale annotation files, especially for region-based searches and hierarchical feature extraction. Leveraging Rust’s
advantages in execution speed, memory safety, and multithreading offers a promising path toward scalable solutions for genome
annotation access.

Findings: We present GFFx, a Rust-based toolkit for high-performance access to GFF annotation files. It employs a compact, model-
aware indexing system and memory-mapped I/O to enable fast random access with minimal overhead. Benchmarks across multiple
genomes show 10-80 times faster ID-based extraction, 20-60 times faster region retrieval, and 7-14 times faster coverage profiling
than existing tools, while maintaining low memory use and small index size.

Conclusions: GFFx offers a lightweight and scalable infrastructure for efficient genome annotation access and quantitative analysis.
By combining Rust’s performance and safety with an extensible design, it provides a robust foundation for large-scale and multi-omics

workflows.

Keywords: GFF file, genome annotation, Rust programming, feature extraction

Introduction

With the growing understanding of functional genome regions be-
yond conventional protein-coding genes, genome annotations are
rapidly increasing in both complexity and volume. Large-scale ef-
forts such as ENCODE [1], FANTOM |[2], and the Roadmap Epige-
nomics Program [3] have cataloged diverse noncoding elements—
including enhancers, promoters, long noncoding RNAs (IncRNAs),
and epigenetic marks—highlighting their roles in gene regula-
tion, chromatin dynamics, and cellular identity. As novel regula-
tory elements, alternative isoforms, and lineage- or tissue-specific
transcripts continue to emerge, annotation datasets are expected
to expand further [4]. The accumulation of such multilayered
annotations, particularly across large genomes or pangenomes,
poses growing challenges for storage, indexing, and efficient
querying.

However, existing tools often struggle to process ultra-large
annotation files efficiently, particularly for region-based queries,
hierarchical model extraction, or parallel execution. A scalable,
high-performance solution optimized for such tasks is urgently
needed. Rust, a modern systems programming language, offers
high execution speed, memory safety, efficient multithreading,
and cross-platform portability. These features have led to its in-
creasing adoption in bioinformatics [5], as exemplified by Rust-Bio
[6], Bigtools [7], Phylo-rs [8], and fibertools [9].

To address these challenges, we developed GFFx, a Rust-based
toolkit for fast and scalable access to genome annotation files.
GFFx supports region-, identity-, and attribute-based queries over

ultra-large General Feature Format (GFF) datasets. Designed as
both a command-line tool and a reusable library, it can be inte-
grated into larger pipelines and software systems. It also demon-
strates Rust’s potential in computational biology by providing a
robust, extensible foundation for high-performance annotation
processing.

Findings
Performance benchmark in annotation indexing

GFFx achieves high-performance efficiency through a modular in-
dexing system anchored by 2 core indices, .prt and .gof, which cap-
ture feature hierarchical relationship and map annotation blocks
to their byte-offsets for direct memory access, respectively. Com-
plementary lightweight indices, including .fts, .a2f, .atn, .sgs, rit,
and .rix, support subcommand-specific operations like feature ex-
traction, attribute-based searches, and region queries with mini-
mal input/output (I/O) overhead (Fig. 1).

Among commonly used GFF processing tools, only gffutils [10]
performs preprocessing by converting GFF files into an SQLite
database. In contrast, GFFx adopts a lightweight index strategy
optimized for direct file-based access. To assess the relative effi-
ciency of these 2 approaches, we compared the runtime required
for index construction in GFFx versus database creation in gffutils
(v0.13).

For this evaluation, we selected 8 representative GFF3 anno-
tation datasets spanning a broad taxonomic range and varying

Received: August 8, 2025. Revised: September 20, 2025. Accepted: September 30, 2025
© The Author(s) 2025. Published by Oxford University Press on behalf of GigaScience. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any

medium, provided the original work is properly cited.

GzZ0z Jaquieoa Og uo Jasn Ayslaaiun Buelleyz Aq G£zZ00£8/y2 Lie1B/eousiosebiB/ca0 L "0 L/10p/aonie/aousioselif/woo dnorolwapese)/:sdpy woly papeojumoq

https://orcid.org/0000-0002-3065-0739
https://orcid.org/0000-0003-1967-2264
https://orcid.org/0000-0001-6860-1521
mailto:wudongya@zju.edu.cn
mailto:guojiezhang@zju.edu.cn
https://creativecommons.org/licenses/by/4.0/

. Input file

Core index

. Subcommand

module-specific index

index
Building Index Files

extract fts
Feature IDs

Fetch by IDs

atn
Gene Symbols

search

rit intersect
Interval Trees Fetch by Region

.rix
Tree Offset

depth/coverage
Coverage Calculation

.Sqgs
Sequence IDs

.a2f

Symbol to Feature

Fetch by Gene Symbols

Figure 1: Architecture of the indexing system and subcommand interactions in GFFx. All index files are generated in advance from a GFF3 file (cream
box) via the index module. While all subcommands (green boxes) have access to the complete set of indices, each subcommand loads only the subset
relevant to its specific function. Core indices .gof and .prt (dark brown boxes) are universally required, whereas module-specific indices, including .fts,

.a2f, .atn, .rit, .rix, and .sqs (light brown boxes), are utilized only by specific subcommands as illustrated.

annotation complexities, with file sizes ranging from 156.86 to
1,511.79 MB (Supplementary Table S1). The datasets included
the vertebrate genomes of Pungitius sinensis (ceob_ps_1.0), Gallus
gallus (GRCg7b), Mus musculus (GRCm39), Sus scrofa (Sscrofall.l),
and Homo sapiens genome (hg38), as well as the invertebrate
genome of Drosophila melanogaster (dm6) and 2 plant genomes,
Triticum aestivum (IWGSC CS refseq v2.1) and Arabidopsis thaliana
(Tair10.1). These datasets collectively capture the diversity of
genome sizes and annotation scales observed in contemporary
genomics. All benchmarks were performed on a dedicated com-
pute node equipped with 2x Intel Xeon Gold 6448H CPUs (32
cores/64 threads each), 1 TB DDR4 RAM, and dual Micron 7450
MTFDKCB960TFR NVMe SSDs (total capacity 1.92 TB). Despite
its relatively complex indexing architecture, GFFx consistently
outperformed gffutils, achieving speedups of 5.81- to 8.45-fold
(Supplementary Fig. Sla). This improvement was accompanied
by higher memory usage. For the largest dataset hg38, GFFx
required 2.77 GB of memory, which remains manageable on
most modern computing platforms, including personal com-
puters (Supplementary Fig. S1b). In addition, the sizes of the
index files produced by both tools scaled linearly with dataset
size, and the indexes generated by GFFx were about 2.5% to
4.1% of the size of those produced by gffutils (Supplementary
Tables S2, S3), underscoring another key advantage of
GFFx.

To assess the effect of dataset size within a single organism, we
down-sampled hg38 and repeated the benchmarks. Runtime in-
creased with dataset size for both tools, and GFFx consistently fin-
ished in about one-sixth to one-seventh of the time required by gf-

futils (Supplementary Fig. S1c). Memory usage for GFFx increased
nearly linearly with dataset size, whereas gffutils remained almost
constant (Supplementary Fig. S1d). Within hg38, these results in-
dicate size-driven scaling with a stable relative advantage of GFFx.
In contrast, cross-organism comparisons show more variability in
the relative speedup, which is more plausibly explained by differ-
ences in annotation complexity, such as the density of noncoding
RNAs, the prevalence of alternative splicing, and the abundance
of repetitive and transposable elements. However, this interpre-
tation will require further validation in future studies with larger
and more diverse datasets.

We benchmarked identifier-based feature extraction performance
of GFFx against 4 existing tools: gffread (v0.12.8) [11], gffutils
(v0.13) [10], bcbio-gff (v0.7.1) [12], and AGAT (v1.4.1) [13]. These
benchmarks used the same 8 annotation GFF files as above,
with 100 replicates per file. In each replicate, we randomly sam-
pled 100,000 feature identifiers once and applied the same sub-
set consistently across all tools to extracted the corresponding
entries. GFFx achieved median runtimes ranging from 0.37 to
1.62 seconds (Fig. 2A; Supplementary Table S4), corresponding
to 10.54- to 80.27-fold speedups over the second fastest tool,
gffread. Besides, GFFx required less memory than other tools,
except gffutils (Fig. 2B; Supplementary Table S4). Overall, GFFx
achieves substantial speedups, with the speed increasing pro-
portionally with the size and complexity of the annotation files,

GZ0z 1aquiada Og uo Jasn Ausianiun bBuelloyz Aq 6£200£8/yZ Lieib/aouaiosebib/es0 L 0 L/10p/a1omue/aousiosebib/wod dno-olwapede//:sdiy woly papeojumoq

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data

GFFx: A Rust-based suite for ultra-fast genomic feature extraction | 3

A
1000 -
@
o) .
£ 100
x
S 101
©
g " Tool
B GFFx
° u gffread
B u gffutils
10000 - BCBio
o B AGAT
=
" 1000 -
7]
o
S 100 -
=
10 -
“ G, 1,) -
L, =y U 2 Vo Vs
(A (Z S, ;
fc@ob 2}0 S G Qgige//o (G'?C/:?O‘S‘OO/ (Sso,oio’ O (/793(9) £ (0'/7)6\)0'06 (/WGS‘(Z\)) 9y, (%/, 0%/00/&
~ @))
‘97.0) 2% 9" 39 s 977 @/‘900 Cs ’?1/%7 7) S, %,
(& 8 'S
e&/s/. Seql/
<7

Figure 2: Comparison of identifier-based extraction performance among GFFx and other tools. (A) Median wall-clock time (log scale) for extracting
100,000 feature identifiers in different annotation files using GFFx (red), gffread (orange), gffutils (tan), BCBio (sand), and AGAT (teal). (B) Maximum
resident set size (RSS, log scale), a measure of peak memory consumption, for each tool and dataset. Data represent the median of 100 replicate runs.

without incurring additional memory overhead. As genome as-
semblies become larger and the annotations grow more detailed,
GFFx will continue to outpace other tools by an ever-widening
margin.

Benchmarking region-based feature retrieval
performance

Subsequently, we compared region-based retrieval performance
of GFFx against 4 tools—gffutils, bcbio-gff, AGAT, and bedtools
(v2.31.1) [14]—substituting bedtools for gffread because gffread
only handles single user-specified regions and does not accept
BED files. Using the same 8 annotation GFF files with 100 repli-
cates each, we generated BED4-format interval files contain-
ing 100,000 randomly sampled 20-kbp bins per replicate us-
ing the random command from bedtools. The resulting interval
sets were used consistently across all tools within each repli-
cate. Among all tools, GFFx delivered the fastest region-based
retrieval, with median runtimes ranging from 0.10 to 0.46 sec-
onds (Fig. 3A; Supplementary Table S5). Excluding GFFx, bedtools
was the next fastest, requiring 3.52 to 11.04 seconds (19.42- to
61.82-fold slower), while dedicated GFF processors were at least
201-fold slower. This performance gain of GFFx derives from its
interval-tree algorithm, which reduces time complexity from O(N)
to O(log N + k), where N represents total number of intervals in
a GFF file and k represents number of overlapped intervals. Al-
though the memory usage of GFFx is not always the lowest (Fig. 3B;
Supplementary Table S5), it remains under 130 MB across all
tests, ensuring operability on standard personal computers with-
out sacrificing speed.

To comprehensively assess GFFx’s performance across diverse
genomic contexts, we further conducted similar benchmarks on
the hg38 annotation using interval lengths ranging from 2.5 to
160 kbp. Across this spectrum, runtime rose gradually from about
0.2 seconds to just over 0.5 seconds (Fig. 3C; Supplementary Table
S6), while memory usage increased from ~77 to ~169 MB (Fig. 3D;
Supplementary Table S6). Importantly, both measures followed a
clear sublinear, power law-like scaling pattern, in which doubling
the interval length resulted in only a modest increase of roughly
15% to 17% in computational cost. This behavior highlights the
favorable scalability of GFFx, demonstrating that the tool retains
high efficiency and robustness even under substantially expanded
interval lengths, thereby reinforcing its utility in large-scale and
heterogeneous genomic analyses.

Benchmarking performance of coverage profiling
Quantifying coverage of read mapping is a routine need in ge-
nomics and computational biology workflows. Diverse sets of ge-
nomic intervals (e.g., capture targets, chromatin immunoprecip-
itation (ChIP) peaks, assay for transposase-accessible chromatin
(ATAC) peaks, transcript exons, variant call regions) must be eval-
uated for how fully they span annotated features or reference
coordinates. At scale, this task is challenging because comput-
ing exact breadth and depth over large, highly overlapping inter-
val sets is costly, as naive approaches require quadratic overlap
checks or per-base scans. It is also difficult to parallelize since
overlaps cross partition boundaries and demand global reconcil-
iation. Existing utilities such as bedtools provides mature func-
tionality but can become runtime and memory bottlenecks on
whole-genome workloads. To address this, GFFx introduces 2 ded-

GzZ0z Jaquieoa Og uo Jasn Ayslaaiun Buelleyz Aq G£zZ00£8/y2 Lie1B/eousiosebiB/ca0 L "0 L/10p/aonie/aousioselif/woo dnorolwapese)/:sdpy woly papeojumoq

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data

4 | GigaScience, 2025, Vol. 14

>

10000 —
1000 —

Wall clock time (s)
- 5
[

o
N
|

AL

B BCBio
gffutils
A1 0000+ u aoar
m
=3
v 1000
%)
[hd
3
= 100 —]
10—
f f ((r 17 ’%
ceob b 09)9.9//% G/?c/b 0@00/ Sso, o ’?93(9) N 0'/7;6) s e Sg e, e,,700’o,0 "
< s7 0) 5%] S9) s a77 o 084,,07 7 S,
96%) 75, "%
91,2
D 7
C
—~ 0.5+
<L = 1501
o 0.4 -
£ =3
% 03+ « 100 -
% 0.3 a
=} [h's
2 021 3 50
g 0.1 =
0- 0-

2.5 5 10 15 20 80 160
Interval size (kbp)

25 5 10 15 20 80 160
Interval size (kbp)

Figure 3: Comparison of region-based feature retrieval performance among GFFx and other tools. (A) Median wall-clock time (log scale) for extracting
100,000 random 20-kbp intervals in different genome annotation files using GFFx (red), bedtools (amber), gffutils (tan), BCBio (sand), and AGAT (teal). (B)
Maximum resident set size (RSS, log scale), a measure of peak memory consumption, for each tool and dataset. (C) Median wall-clock time for
extracting 100,000 random intervals with sizes ranging from 2.5 to 160 kbp. (D) RSS for extracting 100,000 random intervals with sizes ranging from 2.5

to 160 kbp. Data represent the median of 100 replicate runs.

icated subcommands: coverage (for coverage breadth) and depth
(for coverage depth). By partitioning the genome into indexed
slices and combining memory-mapped I/O with interval merging
and 2-pointer scans, GFFx avoids quadratic checks and enables
parallel, memory-bounded computations across independent
regions.

We evaluated performance using 2 high-throughput sequenc-
ing datasets from A. thaliana (NCBI SRA experiment SRX30363821)
and H. sapiens(NCBI SRA experiment SRX30241060), containing
13.20 million and 40.90 million reads, respectively. For each
species, we generated both coordinate-sorted and unsorted BAM
files and compared the runtime and memory usage of GFFx and
bedtools. On sorted inputs, GFFx ran faster than bedtools by 11.58
times in Arabidopsis and 14.04 times in H. sapiens for breadth and
by 10.83 times and 6.93 times for depth (Supplementary Fig. S2a;
Supplementary Table S7). With unsorted BAM files, the breadth
advantage remained substantial at 8.11 times and 10.15 times
in Arabidopsis and H. sapiens, whereas the depth speedup was

more modest at 2.41 times and 1.11 times (Supplementary Fig.
S2¢; Supplementary Table S7). In all experiments, GFFx also re-
quired less memory, using as little as one-twentieth of the res-
ident set size observed for bedtools (Supplementary Fig. S2b, d;
Supplementary Table S7).

Discussion

Here, we present GFFx, a Rust-based, modular, and high-
performance toolkit for efficient processing and querying of ultra-
large GFF3 genome annotation files. It addresses key limitations of
existing tools through a compact, model-aware indexing system
and by leveraging Rust’s strengths in speed, memory safety, and
multithreaded execution. Many widely used tools suffer from per-
formance bottlenecks when processing large-scale annotations.
For example, gffutils depends on relational databases, leading to
long indexing times and high disk usage; AGAT and bcbio-gff offer

GZ0z 1aquiada Og uo Jasn Ausianiun bBuelloyz Aq 6£200£8/yZ Lieib/aouaiosebib/es0 L 0 L/10p/a1omue/aousiosebib/wod dno-olwapede//:sdiy woly papeojumoq

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data

GFFx: A Rust-based suite for ultra-fast genomic feature extraction | 5

broad functionality but are not optimized for fast querying; bed-
tools supports region-based queries but lacks model awareness;
and gffread performs well only on small datasets and lacks paral-
lel support.

Region-based queries in GFFx are powered by an in-memory in-
terval tree index. Interval trees are a well-established data struc-
ture for efficiently storing and querying 1-dimensional intervals
that vary widely in length and often overlap or nest, making them
an ideal fit for genome annotation data [15]. In an interval tree,
each node represents a feature interval and tracks the maximum
endpoint of its subtree. This pruning mechanism skips entire sub-
trees, whose intervals lie outside the query region, avoiding full-
file scans and enabling sublinear query times. Once features are
identified, GFFx uses the .gof index, which maps feature IDs to byte
offsets in the original GFF file to retrieve annotation blocks di-
rectly, resulting in rapid end-to-end extraction even on large, com-
plex datasets.

Benchmark results show that GFFx significantly outperforms
existing tools in both feature extraction and coverage profiling,
offering large speedups while maintaining modest memory usage
and strong parallel scalability. As genome annotations continue to
grow in complexity and size, GFFx offers a practical and extensible
foundation for future bioinformatics workflows.

While robust for standard GFF3 files, the current implemen-
tation assumes well-formed input and does not yet support
GTF or legacy GFF2 formats. Enhancing compatibility and fault
tolerance—particularly for nonstandard annotations—remains
an important area for development. Planned extensions include
support for additional formats, distributed computing integra-
tion, and interactive search for large-scale databases. GFFx is dis-
tributed as a statically compiled binary for Linux, macOS, and
Windows. It can also be used as a Rust library, allowing inte-
gration into custom pipelines and tools. Its modular architecture
and clean API offer fine-grained access to core functions, making
GFFx both performant and programmable. Full documentation is
available at docs.rs/GFFx, and the GitHub repository includes user
manuals, benchmarks, input data, and source code for complete
reproducibility.

Methods

Architectural design of indexing system
underpins GFFx performance

GFFx was developed as a modular and high-performance
command-line toolkit for processing large GFF files. Its efficiency
is supported by a carefully engineered indexing system (Fig. 1). At
the core of GFFx are 2 index files shared across all subcommands:
.prt and .gof. The .prt index encodes the hierarchical relationships
among annotated features and delineates annotation blocks as
minimal, biologically coherent units, such as complete gene mod-
els or transcript structures. The .gof index maps each annotation
block to its corresponding byte-offset range in the original GFF
file, enabling direct memory-mapped access to specific regions
without requiring full-file scanning or decompression. Together,
these 2 indices provide the structural and positional backbone of
GFFx, allowing fast and model-aware access to genome annota-
tions with minimal 1/O overhead. To minimize redundancy and
reduce index file size, both .prt and .gof use numeric feature iden-
tifiers assigned in order of appearance. The original string-form
feature IDs are stored separately in the fts file.

In addition to the core indices, GFFx generates several auxiliary
index files that support specific subcommands. The extract sub-

command retrieves the full annotation block associated with a
given feature and requires only the fts index, which records all
feature identifiers in order, together with the .prt and .gof files.
For attribute-based queries, the .atn file stores all user-specified
string-form identifiers found in the attribute field of the GFF file
(such as “gene,” “Name,” or “symbol”), while the .a2f file maps
each attribute value to its corresponding numeric feature ID.
These 2 files are used by the search subcommand, which enables
both exact and fuzzy attribute queries. The intersect subcom-
mand uses an interval tree scheme. GFFx builds a .rit file con-
taining all interval tree nodes laid out sequentially and a com-
panion .rix file that records offsets in .rit for each chromosome
or scaffold, so that only the relevant subtree is loaded on de-
mand. This reduces region-query time complexity from O(N) to
O(log N), greatly speeding up lookups in large genomes. All indices
are written in compact binary format and accessed on demand
by each subcommand to minimize storage footprint and loading
time.

Efficient runtime strategies for feature extraction
and coverage profiling

To achieve high-throughput querying from ultra-large GFF3 files,
GFFx incorporates several performance-oriented design strategies
beyond its indexing system. All subcommands operate directly on
memory-mapped representations of the original GFF file using the
memmap? library. This eliminates the need for repeated I/O or
line-by-line parsing by allowing byte-range access to annotation
blocks through read-only mappings. Extracted regions or feature
models are located via index lookups and retrieved efficiently by
copying their byte slices directly from the memory-mapped buffer.
To minimize redundant computation, GFFx leverages reference-
counted shared memory to ensure that index structures such as
.gof and .rit are loaded only once and reused across all operations.
Output blocks are streamed directly to disk, avoiding large mem-
ory buffers, and the software assumes well-formed GFF3 input to
reduce validation overhead.

To ensure high-performance region-based feature extraction
and coverage profiling, GFFx leverages several optimizations pro-
vided by the Rust ecosystem, such as the use of “FxHashMap”
for low-overhead hash-based mappings and “lexical core” for
converting ASCII byte sequences into integer coordinates with
minimal latency. Additionally, input regions are pre-bucketed
by chromosome and sorted by the start coordinates, ensuring
each interval tree to be queried only with relevant regions,
thereby reducing unnecessary computation and improving cache
locality.

Availability of Source Code and
Requirements

Project name: GFFx
Project homepage: https://github.com/Baohua-Chen/GFFx
Operating system(s): Linux
Programming language: Rust
License: Apache-2.0 license
RRID:SCR_027445
biotools: gffx

Additional Files

Supplementary Fig. S1. Comparison of preprocessing perfor-
mance between GFFx and g¢fftuils. (a) Median wall-clock time (log

GzZ0z Jaquieoa Og uo Jasn Ayslaaiun Buelleyz Aq G£zZ00£8/y2 Lie1B/eousiosebiB/ca0 L "0 L/10p/aonie/aousioselif/woo dnorolwapese)/:sdpy woly papeojumoq

https://github.com/Baohua-Chen/GFFx
https://scicrunch.org/resolver/RRID:SCR_027445

6 | GigaScience, 2025, Vol. 14

scale) on different datasets using GFFx (red) and gffutils (brown).
(b) Maximum resident set size (RSS, log scale), a measure of peak
memory consumption, for each tool and dataset. (c) Median wall-
clock time on hg38 (Homo sapiens) downsampled datasets (10%-
100%). (d) Maximum resident set size (RSS) on hg38 downsampled
datasets (10%-100%).

Supplementary Fig. S2. Comparison of coverage profiling perfor-
mance between GFFx and bedtools. (a) Median wall-clock time (log
scale) for quantifying coverage breadth over Tair10.1 (Arabidopsis
thaliana) and hg38 (Homo sapiens) genome annotations. (b) Max-
imum resident set size (RSS, log scale) for quantifying breadth
over genome annotations. (c) Median wall-clock time (log scale)
for quantifying coverage depth over Tair10.1 and hg38 genome an-
notations. (d) Maximum resident set size (RSS, log scale) for quan-
tifying depth over genome annotations.

Supplementary Table S1. File sizes and feature counts of GFF3
annotation datasets used in benchmarking.

Supplementary Table S2. Sizes of GFFx index files and gffutils
database files from different genome annotation datasets.
Supplementary Table S3. Sizes of GFFx index files and gffutils
database files from downsampled hg38 GFF files.
Supplementary Table S4. Benchmarking runtime and memory
usage of ID-based feature extraction across five GFF tools.
Supplementary Table S5. Benchmarking runtime and mem-
ory usage of region-based feature extraction across 5 GFF
tools.

Supplementary Table S6. Benchmarking region-based feature ex-
traction performance of GFFx using intervals with different sizes.
Supplementary Table S7. Benchmarking runtime and memory
usage of coverage profiling.

Abbreviations

GFF: General Feature Format; I/O: input/output; IncRNA: long
noncoding RNA; RSS: resident set size.

Author Contributions

B.C. conceived the project, implemented the method, analyzed the
data, and wrote the manuscript draft. D.W. discussed the results
and revised the manuscript. G.Z. supervised this study.

Funding

This work was supported by grants from the National Key R&D
Program of China (2025YFC3410300) and the Young Scientists
Fund of the National Natural Science Foundation of China (No.
32300490) to D.W.

Data Availability

The source code and user manual of GFFx are also archived at Zen-
odo [16]. Benchmarking scripts and original results are provided
at GitHub [17] and Zenodo [16].

Competing Interests

The authors declare that they have no competing interests.

References

1. Moore JE, Purcaro MJ, Pratt HE, et al. Expanded encyclopaedias
of DNA elements in the human and mouse genomes. Nature.
2020;583:699-710. https://doi.org/10.1038/s41586-020-2493-4.

2. Forrest ARR, Kawaji H, Rehli M, et al. A promoter-level mam-
malian expression atlas. Nature. 2014;507:462-70. https://doi.or
g/10.1038/nature13182.

3. Satterlee JS, Chadwick LH, Tyson FL, et al. The NIH Common
Fund/Roadmap Epigenomics Program: successes of a compre-
hensive consortium. Sci Adv. 2019;5:eaaw6507. https://doi.org/
10.1126/sciadv.aaw6507.

4. Harrison PW, Amode MR, Austine-Orimoloye O, et al. Ensembl
2024. Nucleic Acids Res. 2024;52:D891-99. https://doi.org/10.109
3/nar/gkad1049.

5. Perkel JM. Why scientists are turning to Rust. Nature.
2020;588:185. https://doi.org/10.1038/d41586-020-03382-2

6. Koster J. Rust-Bio: a fast and safe bioinformatics library. Bioin-
formatics. 2016;32:444-46. https://doi.org/10.1093/bioinformati
cs/btvs73.

7. Huey JD, Abdennur N. Bigtools: a high-performance BigWig and
BigBed library in Rust. Bioinformatics. 2024;40:btae350. https://
doi.org/10.1093/bioinformatics/btae350.

8. Vijendran S, Anderson T, Markin A, et al. Phylo-rs: an extensible
phylogenetic analysis library in rust. BMC Bioinf. 2025;26:197. ht
tps://doi.org/10.1186/512859-025-06234-w.

9. Jha A, Bohaczuk SC, Mao Y, et al. DNA-m6A calling and inte-
grated long-read epigenetic and genetic analysis with fibertools.
Genome Res. 2024;34:1976-86. https://doi.org/10.1101/gr.27909
5.124.

10. Dale R. Gffutils: GFF and GTF file manipulation and Intercon-
version. GitHub. https://github.com/daler/gffutils/. Accessed 5
Aug 2025.

11. Pertea G, Pertea M. GFF utilities: gffRead and GffCompare.
F1000Res. 2020;9:304. https://doi.org/10.12688/f1000research.2
3297.2.

12. Chapman B. bebio-gff. GitHub. v0. 6.4.

13. DainatJ. AGAT: Another Gff Analysis Toolkit to handle annota-
tions in any GTF/GFF format. Zenodo. 2025. https://doi.org/10.5
281/zenodo.3552717 Accessed 5 Aug 2025.

14. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics. 2010;26:841-42. ht
tps://doi.org/10.1093/bicinformatics/btq033.

15. Lawrence M, Huber W, Pages H, et al. Software for com-
puting and annotating genomic ranges. PLoS Comput Biol.
2013;9:1003118. https://doi.org/10.1371/journal.pcbi.1003118.

16. Chen B, Wu D, Zhang G. GFFx: a Rust-based suite of utilities for
ultra-fast genomic feature extraction. Zenodo. 2025. https://doi.
0rg/10.5281/zenodo.17143647. Accessed 20 Aug 2025.

17. Chen B. GFFx_benchmarks. GitHub website. https://github.com
/Baohua-Chen/GFFx_benchmarks. Accessed 20 August 2025.

Received: August 8, 2025. Revised: September 20, 2025. Accepted: September 30, 2025

© The Author(s) 2025. Published by Oxford University Press on behalf of GigaScience. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

GZ0z 1aquiada Og uo Jasn Ausianiun bBuelloyz Aq 6£200£8/yZ Lieib/aouaiosebib/es0 L 0 L/10p/a1omue/aousiosebib/wod dno-olwapede//:sdiy woly papeojumoq

https://doi.org/10.1038/s41586-020-2493-4
https://doi.org/10.1038/nature13182
https://doi.org/10.1126/sciadv.aaw6507
https://doi.org/10.1093/nar/gkad1049
https://doi.org/10.1038/d41586-020-03382-2
https://doi.org/10.1093/bioinformatics/btv573
https://doi.org/10.1093/bioinformatics/btae350
https://doi.org/10.1186/s12859-025-06234-w
https://doi.org/10.1101/gr.279095.124
https://github.com/daler/gffutils
https://doi.org/10.12688/f1000research.23297.2
https://doi.org/10.5281/zenodo.3552717
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1371/journal.pcbi.1003118
https://doi.org/10.5281/zenodo.17143647
https://github.com/Baohua-Chen/GFFx_benchmarks
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Findings
	Discussion
	Methods
	Availability of Source Code and Requirements
	Additional Files
	Abbreviations
	Author Contributions
	Funding
	Data Availability
	Competing Interests
	References

