
GigaScience , 2025, 14 , 1–6

DOI: 10.1093/gigascience/giaf124

Technical Note

GFFx : A Rust-based suite of utilities for ultra-fast

genomic feature extraction

Baohua Chen

1 ,2 , Dongya Wu

1 ,2 , * , and Guojie Zhang 1 ,2 , *

1 School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
2 Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
∗Correspondence address. Dongya Wu, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China. E-mail:
wudongya@zju.edu.cn ; Guojie Zhang, Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121,
China. E-mail: guojiezhang@zju.edu.cn

Abstract

Background: Genome annotations have become increasingly complex with the discovery of diverse regulatory elements and transcript
variants, posing growing challenges for efficient data querying and storage. Existing tools often show performance bottlenecks when

processing large-scale annotation files, especially for region-based searches and hierarchical feature extraction. Leveraging Rust’s
advantages in execution speed, memory safety, and multithreading offers a promising path toward scalable solutions for genome
annotation access.

Findings: We present GFFx , a Rust-based toolkit for high-performance access to GFF annotation files. It employs a compact, model-
aware indexing system and memory-mapped I/O to enable fast random access with minimal overhead. Benchmarks across multiple
genomes show 10–80 times faster ID-based extraction, 20–60 times faster region retrieval, and 7–14 times faster coverage profiling
than existing tools, while maintaining low memory use and small index size.

Conclusions: GFFx offers a lightweight and scalable infrastructure for efficient genome annotation access and quantitative analysis.
By combining Rust’s performance and safety with an extensible design, it provides a robust foundation for large-scale and multi-omics
workflows.

Keywords: GFF file, genome annotation, Rust programming, feature extraction

u
b

g

s
r
p

F
P
G
d

t
t
p

a
t
m

p
d
o

c

f

(

t

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giaf124/8300235 by Zhejiang U

niversity user on 30 D
ecem

ber 2025
Introduction

With the growing understanding of functional genome regions be-
yond conventional protein-coding genes, genome annotations are
rapidly increasing in both complexity and volume. Large-scale ef-
forts such as ENCODE [1], FANTOM [2], and the Roadmap Epige-
nomics Program [3] have cataloged diverse noncoding elements—
including enhancers, promoters, long noncoding RNAs (lncRNAs),
and epigenetic marks—highlighting their roles in gene regula-
tion, chromatin dynamics, and cellular identity. As novel regula-
tory elements, alternative isoforms, and lineage- or tissue-specific
transcripts continue to emerge, annotation datasets are expected

to expand further [4]. The accumulation of such multilayered

annotations, particularly across large genomes or pangenomes,
poses growing challenges for storage, indexing, and efficient
querying.

However, existing tools often struggle to process ultra-large
annotation files efficiently, particularly for region-based queries,
hierarchical model extraction, or parallel execution. A scalable,
high-performance solution optimized for such tasks is urgently
needed. Rust, a modern systems programming language, offers
high execution speed, memory safety, efficient multithreading,
and cross-platform portability. These features have led to its in-
creasing adoption in bioinformatics [5], as exemplified by Rust-Bio
[6], Bigtools [7], Phylo-rs [8], and fibertools [9].

To address these challenges, we developed GFFx , a Rust-based

toolkit for fast and scalable access to genome annotation files.
GFFx supports region-, identity-, and attribute-based queries over
Received: August 8, 2025. Revised: September 20, 2025. Accepted: September 30, 202
© The Author(s) 2025. Published by Oxford University Press on behalf of GigaScienc
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), whic
medium, provided the original work is properly cited.
ltra-large General Feature Format (GFF) datasets. Designed as
oth a command-line tool and a reusable library, it can be inte-
rated into larger pipelines and software systems. It also demon-
trates Rust’s potential in computational biology by providing a
obust, extensible foundation for high-performance annotation

rocessing.

indings

erformance benchmark in annotation indexing

FFx achieves high-performance efficiency through a modular in-
exing system anchored by 2 core indices, .prt and .gof, which cap-
ure feature hierarchical relationship and map annotation blocks
o their byte-offsets for direct memory access, respectively. Com-
lementary lightweight indices, including .fts , .a2f , .atn , .sqs , rit ,
nd .rix , support subcommand-specific operations like feature ex-
raction, attribute-based searches, and region queries with mini-

al input/output (I/O) overhead (Fig. 1).
Among commonly used GFF processing tools, only gffutils [10]

erforms preprocessing by converting GFF files into an SQLite
atabase. In contrast, GFFx adopts a lightweight index strategy
ptimized for direct file-based access. To assess the relative effi-
iency of these 2 approaches, we compared the runtime required
or index construction in GFFx versus database creation in gffutils
v0.13).

For this evaluation, we selected 8 representative GFF3 anno-
ation datasets spanning a broad taxonomic range and varying
5
e. This is an Open Access article distributed under the terms of the Creative
h permits unrestricted reuse, distribution, and reproduction in any

https://orcid.org/0000-0002-3065-0739
https://orcid.org/0000-0003-1967-2264
https://orcid.org/0000-0001-6860-1521
mailto:wudongya@zju.edu.cn
mailto:guojiezhang@zju.edu.cn
https://creativecommons.org/licenses/by/4.0/

2 | GigaScience, 2025, Vol. 14

Figure 1: Architecture of the indexing system and subcommand interactions in GFFx . All index files are generated in advance from a GFF3 file (cream

box) via the index module. While all subcommands (green boxes) have access to the complete set of indices, each subcommand loads only the subset
relevant to its specific function. Core indices .gof and .prt (dark brown boxes) are universally required, whereas module-specific indices, including .fts ,
.a2f , .atn , .rit , .rix , and .sqs (light brown boxes), are utilized only by specific subcommands as illustrated.

a

1

t

g

a

g

T

(

g

g

p

c

M

i

o

(

b

r

m

p

i

s

4

T

G

d

c

i

f

n

c

d

I

t

e

R

o

t

a

B

p
W

o

(

b

w

p

s

e

1

t

g

e

a

p

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giaf124/8300235 by Zhejiang U

niversity user on 30 D
ecem

ber 2025
nnotation complexities, with file sizes ranging from 156.86 to
,511.79 MB (Supplementary Table S1). The datasets included
he vertebrate genomes of Pungitius sinensis (ceob_ps_1.0), Gallus
allus (GRCg7b), Mus musculus (GRCm39), Sus scrofa (Sscrofa11.1),
nd Homo sapiens genome (hg38), as well as the invertebrate
enome of Drosophila melanogaster (dm6) and 2 plant genomes,
riticum aestivum (IWGSC CS refseq v2.1) and Arabidopsis thaliana
Tair10.1). These datasets collectively capture the diversity of
enome sizes and annotation scales observed in contemporary
enomics. All benchmarks were performed on a dedicated com-
ute node equipped with 2 × Intel Xeon Gold 6448H CPUs (32
ores/64 threads each), 1 TB DDR4 RAM, and dual Micron 7450
TFDKCB960TFR NVMe SSDs (total capacity 1.92 TB). Despite

ts relatively complex indexing architecture, GFFx consistently
utperformed gffutils , achieving speedups of 5.81- to 8.45-fold
 Supplementary Fig. S1 a). This improvement was accompanied
y higher memory usage. For the largest dataset hg38, GFFx
equired 2.77 GB of memory, which remains manageable on

ost modern computing platforms, including personal com-
uters (Supplementary Fig. S1 b). In addition, the sizes of the

ndex files produced by both tools scaled linearly with dataset
ize, and the indexes generated by GFFx were about 2.5% to
.1% of the size of those produced by gffutils (Supplementary
ables S2 , S3), underscoring another key advantage of
FFx .

To assess the effect of dataset size within a single organism, we
own-sampled hg38 and repeated the benchmarks. Runtime in-
reased with dataset size for both tools, and GFFx consistently fin-
shed in about one-sixth to one-seventh of the time required by gf-
utils (Supplementary Fig. S1 c). Memory usage for GFFx increased
early linearly with dataset size, whereas gffutils remained almost
onstant (Supplementary Fig. S1 d). Within hg38, these results in-
icate size-driven scaling with a stable relative advantage of GFFx .
n contrast, cross-organism comparisons show more variability in
he relative speedup, which is more plausibly explained by differ-
nces in annotation complexity, such as the density of noncoding
NAs, the prevalence of alternative splicing, and the abundance
f repetitive and transposable elements. However, this interpre-
ation will require further validation in future studies with larger
nd more diverse datasets.

enchmarking identifier-based feature extraction
erformance

e benchmarked identifier-based feature extraction performance
f GFFx against 4 existing tools: gffread (v0.12.8) [11], gffutils
v0.13) [10], bcbio-gff (v0.7.1) [12], and AGAT (v1.4.1) [13]. These
enchmarks used the same 8 annotation GFF files as above,
ith 100 replicates per file. In each replicate, we randomly sam-
led 100,000 feature identifiers once and applied the same sub-
et consistently across all tools to extracted the corresponding
ntries. GFFx achieved median runtimes ranging from 0.37 to
.62 seconds (Fig. 2 A; Supplementary Table S4), corresponding
o 10.54- to 80.27-fold speedups over the second fastest tool,
ffread . Besides, GFFx required less memory than other tools,
xcept gffutils (Fig. 2 B; Supplementary Table S4). Overall, GFFx
chieves substantial speedups, with the speed increasing pro-
ortionally with the size and complexity of the annotation files,

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data

GFFx: A Rust-based suite for ultra-fast genomic feature extraction | 3

A

B

Figure 2: Comparison of identifier-based extraction performance among GFFx and other tools. (A) Median wall-clock time (log scale) for extracting
100,000 feature identifiers in different annotation files using GFFx (red), gffread (orange), gffutils (tan), BCBio (sand), and AGAT (teal). (B) Maximum

resident set size (RSS, log scale), a measure of peak memory consumption, for each tool and dataset. Data represent the median of 100 replicate runs.

 g
t

1

0

S

S
c
t

1

f

h
i
h

B
Q

n
n
i
(

u

c
i

v

c

o
i
t
w

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giaf124/8300235 by Zhejiang U

niversity user on 30 D
ecem

ber 2025
without incurring additional memory overhead. As genome as-
semblies become larger and the annotations grow more detailed,
GFFx will continue to outpace other tools by an ever-widening
margin.

Benchmarking region-based feature retrieval
performance

Subsequently, we compared region-based retrieval performance
of GFFx against 4 tools—gffutils , bcbio-gff , AGAT , and bedtools
(v2.31.1) [14]—substituting bedtools for gffread because gffread
only handles single user-specified regions and does not accept
BED files. Using the same 8 annotation GFF files with 100 repli-
cates each, we generated BED4-format interval files contain-
ing 100,000 randomly sampled 20-kbp bins per replicate us-
ing the random command from bedtools . The resulting interval
sets were used consistently across all tools within each repli-
cate. Among all tools, GFFx delivered the fastest region-based

retrieval, with median runtimes ranging from 0.10 to 0.46 sec-
onds (Fig. 3 A; Supplementary Table S5). Excluding GFFx , bedtools
was the next fastest, requiring 3.52 to 11.04 seconds (19.42- to
61.82-fold slower), while dedicated GFF processors were at least
201-fold slower. This performance gain of GFFx derives from its
interval-tree algorithm, which reduces time complexity from O(N)
to O(log N + k), where N represents total number of intervals in

a GFF file and k represents number of overlapped intervals. Al-
though the memory usage of GFFx is not always the lowest (Fig. 3 B;
Supplementary Table S5), it remains under 130 MB across all
tests, ensuring operability on standard personal computers with-
out sacrificing speed.
To comprehensively assess GFFx ’s performance across diverse
enomic contexts, we further conducted similar benchmarks on

he hg38 annotation using interval lengths ranging from 2.5 to
60 kbp. Across this spectrum, runtime rose gradually from about
.2 seconds to just over 0.5 seconds (Fig. 3 C; Supplementary Table
6), while memory usage increased from ∼77 to ∼169 MB (Fig. 3 D;
upplementary Table S6). Importantly, both measures followed a
lear sublinear, power law–like scaling pattern, in which doubling
he interval length resulted in only a modest increase of roughly
5% to 17% in computational cost. This behavior highlights the
avorable scalability of GFFx , demonstrating that the tool retains
igh efficiency and robustness even under substantially expanded

nterval lengths, thereby reinforcing its utility in large-scale and

eterogeneous genomic analyses.

enchmarking performance of coverage profiling

uantifying coverage of read mapping is a routine need in ge-
omics and computational biology workflows. Diverse sets of ge-
omic intervals (e.g., capture targets, chromatin immunoprecip-

tation (ChIP) peaks, assay for transposase-accessible chromatin

ATAC) peaks, transcript exons, variant call regions) must be eval-
ated for how fully they span annotated features or reference
oordinates. At scale, this task is challenging because comput-
ng exact breadth and depth over large, highly overlapping inter-
al sets is costly, as naive approaches require quadratic overlap
hecks or per-base scans. It is also difficult to parallelize since
verlaps cross partition boundaries and demand global reconcil-
ation. Existing utilities such as bedtools provides mature func-
ionality but can become runtime and memory bottlenecks on

hole-genome workloads. To address this, GFFx introduces 2 ded-

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data

4 | GigaScience, 2025, Vol. 14

A

B

C
D

Figure 3: Comparison of region-based feature retrieval performance among GFFx and other tools. (A) Median wall-clock time (log scale) for extracting
100,000 random 20-kbp intervals in different genome annotation files using GFFx (red), bedtools (amber), gffutils (tan), BCBio (sand), and AGAT (teal). (B)
Maximum resident set size (RSS, log scale), a measure of peak memory consumption, for each tool and dataset. (C) Median wall-clock time for
extracting 100,000 random intervals with sizes ranging from 2.5 to 160 kbp. (D) RSS for extracting 100,000 random intervals with sizes ranging from 2.5
to 160 kbp. Data represent the median of 100 replicate runs.

i

(

s

a

p

r

i

a

1

s

fi

b

t

b

S

a

i

m

S

q

i

S

D
H

p

l

e

a

m

f

F

l

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giaf124/8300235 by Zhejiang U

niversity user on 30 D
ecem

ber 2025
cated subcommands: coverage (for coverage breadth) and depth
for coverage depth). By partitioning the genome into indexed
lices and combining memory-mapped I/O with interval merging
nd 2-pointer scans, GFFx avoids quadratic checks and enables
arallel, memory-bounded computations across independent
egions.

We evaluated performance using 2 high-throughput sequenc-
ng datasets from A. thaliana (NCBI SRA experiment SRX30363821)
nd H. sapiens (NCBI SRA experiment SRX30241060), containing
3.20 million and 40.90 million reads, respectively. For each
pecies, we generated both coordinate-sorted and unsorted BAM
les and compared the runtime and memory usage of GFFx and
edtools . On sorted inputs, GFFx ran faster than bedtools by 11.58
imes in Arabidopsis and 14.04 times in H. sapiens for breadth and
y 10.83 times and 6.93 times for depth (Supplementary Fig. S2 a;
upplementary Table S7). With unsorted BAM files, the breadth
dvantage remained substantial at 8.11 times and 10.15 times
n Arabidopsis and H. sapiens , whereas the depth speedup was
ore modest at 2.41 times and 1.11 times (Supplementary Fig.
2 c; Supplementary Table S7). In all experiments, GFFx also re-
uired less memory, using as little as one-twentieth of the res-

dent set size observed for bedtools (Supplementary Fig. S2 b, d;
upplementary Table S7).

iscussion

ere, we present GFFx , a Rust-based, modular, and high-
erformance toolkit for efficient processing and querying of ultra-

arge GFF3 genome annotation files. It addresses key limitations of
xisting tools through a compact, model-aware indexing system
nd by leveraging Rust’s strengths in speed, memory safety, and
ultithreaded execution. Many widely used tools suffer from per-

ormance bottlenecks when processing large-scale annotations.
or example, gffutils depends on relational databases, leading to
ong indexing times and high disk usage; AGAT and bcbio-gff offer

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf124#supplementary-data

GFFx: A Rust-based suite for ultra-fast genomic feature extraction | 5

c
g

f

F
s

(
e

T

b
m

t

p

o

m

O

a

b
t

E
a
T

G
b
m
m

l
b
m

c

T
c

.

O
o

r

a
v
f
c
m
b
e

t
l

A
R
P

A
S
m

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giaf124/8300235 by Zhejiang U

niversity user on 30 D
ecem

ber 2025
broad functionality but are not optimized for fast querying; bed-
tools supports region-based queries but lacks model awareness;
and gffread performs well only on small datasets and lacks paral-
lel support.

Region-based queries in GFFx are powered by an in-memory in-
terval tree index. Interval trees are a well-established data struc-
ture for efficiently storing and querying 1-dimensional intervals
that vary widely in length and often overlap or nest, making them

an ideal fit for genome annotation data [15]. In an interval tree,
each node represents a feature interval and tracks the maximum

endpoint of its subtree. This pruning mechanism skips entire sub-
trees, whose intervals lie outside the query region, avoiding full-
file scans and enabling sublinear query times. Once features are
identified, GFFx uses the .gof index, which maps feature IDs to byte
offsets in the original GFF file to retrieve annotation blocks di-
rectly, resulting in rapid end-to-end extraction even on large, com-
plex datasets.

Benchmark results show that GFFx significantly outperforms
existing tools in both feature extraction and coverage profiling,
offering large speedups while maintaining modest memory usage
and strong parallel scalability. As genome annotations continue to
grow in complexity and size, GFFx offers a practical and extensible
foundation for future bioinformatics workflows.

While robust for standard GFF3 files, the current implemen-
tation assumes well-formed input and does not yet support
GTF or legacy GFF2 formats. Enhancing compatibility and fault
tolerance—particularly for nonstandard annotations—remains
an important area for development. Planned extensions include
support for additional formats, distributed computing integra-
tion, and interactive search for large-scale databases. GFFx is dis-
tributed as a statically compiled binary for Linux, macOS, and

Windows. It can also be used as a Rust library, allowing inte-
gration into custom pipelines and tools. Its modular architecture
and clean API offer fine-grained access to core functions, making
GFFx both performant and programmable. Full documentation is
available at docs.rs/GFFx, and the GitHub repository includes user
manuals, benchmarks, input data, and source code for complete
reproducibility.

Methods

Architectural design of indexing system

underpins GFFx performance

GFFx was developed as a modular and high-performance
command-line toolkit for processing large GFF files. Its efficiency
is supported by a carefully engineered indexing system (Fig. 1). At
the core of GFFx are 2 index files shared across all subcommands:
.prt and .gof . The .prt index encodes the hierarchical relationships
among annotated features and delineates annotation blocks as
minimal, biologically coherent units, such as complete gene mod-
els or transcript structures. The .gof index maps each annotation

block to its corresponding byte-offset range in the original GFF
file, enabling direct memory-mapped access to specific regions
without requiring full-file scanning or decompression. Together,
these 2 indices provide the structural and positional backbone of
GFFx , allowing fast and model-aware access to genome annota-
tions with minimal I/O overhead. To minimize redundancy and

reduce index file size, both .prt and .gof use numeric feature iden-
tifiers assigned in order of appearance. The original string-form

feature IDs are stored separately in the .fts file.
In addition to the core indices, GFFx generates several auxiliary

index files that support specific subcommands. The extract sub-
ommand retrieves the full annotation block associated with a
iven feature and requires only the .fts index, which records all
eature identifiers in order, together with the .prt and .gof files.
or attribute-based queries, the .atn file stores all user-specified

tring-form identifiers found in the attribute field of the GFF file
such as “gene,” “Name,” or “symbol”), while the .a2f file maps
ach attribute value to its corresponding numeric feature ID.
hese 2 files are used by the search subcommand, which enables
oth exact and fuzzy attribute queries. The intersect subcom-
and uses an interval tree scheme. GFFx builds a .rit file con-

aining all interval tree nodes laid out sequentially and a com-
anion .rix file that records offsets in .rit for each chromosome
r scaffold, so that only the relevant subtree is loaded on de-
and. This reduces region-query time complexity from O(N) to
(log N), greatly speeding up lookups in large genomes. All indices
re written in compact binary format and accessed on demand
y each subcommand to minimize storage footprint and loading
ime.

fficient runtime strategies for feature extraction

nd coverage profiling

o achieve high-throughput querying from ultra-large GFF3 files,
FFx incorporates several performance-oriented design strategies
eyond its indexing system. All subcommands operate directly on

emory-mapped representations of the original GFF file using the
emmap2 library. This eliminates the need for repeated I/O or

ine-by-line parsing by allowing byte-range access to annotation

locks through read-only mappings. Extracted regions or feature
odels are located via index lookups and retrieved efficiently by

opying their byte slices directly from the memory-mapped buffer.
o minimize redundant computation, GFFx leverages reference-
ounted shared memory to ensure that index structures such as
gof and .rit are loaded only once and reused across all operations.
utput blocks are streamed directly to disk, avoiding large mem-
ry buffers, and the software assumes well-formed GFF3 input to
educe validation overhead.

To ensure high-performance region-based feature extraction

nd coverage profiling, GFFx leverages several optimizations pro-
ided by the Rust ecosystem, such as the use of “FxHashMap”
or low-overhead hash-based mappings and “lexical_core” for
onverting ASCII byte sequences into integer coordinates with

inimal latency. Additionally, input regions are pre-bucketed

y chromosome and sorted by the start coordinates, ensuring
ach interval tree to be queried only with relevant regions,
hereby reducing unnecessary computation and improving cache
ocality.

vailability of Source Code and

equirements

roject name: GFFx
Project homepage: https://github.com/Baohua-Chen/GFFx
Operating system(s): Linux
Programming language: Rust
License: Apache-2.0 license
RRID:SCR_027445
biotools: gffx

dditional Files

upplementary Fig. S1. Comparison of preprocessing perfor-
ance between GFFx and gfftuils . (a) Median wall-clock time (log

https://github.com/Baohua-Chen/GFFx
https://scicrunch.org/resolver/RRID:SCR_027445

6 | GigaScience, 2025, Vol. 14

s

(

m

c
1

d
S

m

s

t

i

o

f

n

t
S

a
S

d
S

d
S

u
S

o

t
S

t

S

u

A
G

n

A
B

d

a

F
T

P

F

3

D
T

o

a

C
T

R
1

2

3

4

5

6

7

8

9

1

1

1
1

1

1

1

1

R
©
L

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giaf124/8300235 by Zhejiang U

niversity user on 30 D
ecem

ber 2025
cale) on different datasets using GFFx (red) and gffutils (brown).
b) Maximum resident set size (RSS, log scale), a measure of peak

emory consumption, for each tool and dataset. (c) Median wall-
lock time on hg38 (Homo sapiens) downsampled datasets (10%–
00%). (d) Maximum resident set size (RSS) on hg38 downsampled
atasets (10%–100%).
upplementary Fig. S2. Comparison of coverage profiling perfor-
ance between GFFx and bedtools . (a) Median wall-clock time (log

cale) for quantifying coverage breadth over Tair10.1 (Arabidopsis
haliana) and hg38 (Homo sapiens) genome annotations. (b) Max-
mum resident set size (RSS, log scale) for quantifying breadth
ver genome annotations. (c) Median wall-clock time (log scale)
or quantifying coverage depth over Tair10.1 and hg38 genome an-
otations. (d) Maximum resident set size (RSS, log scale) for quan-
ifying depth over genome annotations.
upplementary Table S1. File sizes and feature counts of GFF3
nnotation datasets used in benchmarking.
upplementary Table S2. Sizes of GFFx index files and gffutils
atabase files from different genome annotation datasets.
upplementary Table S3. Sizes of GFFx index files and gffutils
atabase files from downsampled hg38 GFF files.
upplementary Table S4. Benchmarking runtime and memory
sage of ID-based feature extraction across five GFF tools.
upplementary Table S5. Benchmarking runtime and mem-
ry usage of region-based feature extraction across 5 GFF
ools.
upplementary Table S6. Benchmarking region-based feature ex-
raction performance of GFFx using intervals with different sizes.
upplementary Table S7. Benchmarking runtime and memory
sage of coverage profiling.

bbreviations

FF: General Feature Format; I/O: input/output; lncRNA: long
oncoding RNA; RSS: resident set size.

uthor Contributions

.C. conceived the project, implemented the method, analyzed the
ata, and wrote the manuscript draft. D.W. discussed the results
nd revised the manuscript. G.Z. supervised this study.

unding

his work was supported by grants from the National Key R&D
rogram of China (2025YFC3410300) and the Young Scientists
und of the National Natural Science Foundation of China (No.
2300490) to D.W.

ata Availability

he source code and user manual of GFFx are also archived at Zen-
do [16]. Benchmarking scripts and original results are provided
t GitHub [17] and Zenodo [16].
eceived: August 8, 2025. Revised: September 20, 2025. Accepted: September 30, 2025
The Author(s) 2025. Published by Oxford University Press on behalf of GigaScience. This is an Op

icense (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribu
ompeting Interests

he authors declare that they have no competing interests.

eferences

. Moore JE, Purcaro MJ, Pratt HE, et al. Expanded encyclopaedias
of DNA elements in the human and mouse genomes. Nature.
2020;583:699–710. https://doi.org/10.1038/s41586- 020- 2493- 4 .

. Forrest ARR, Kawaji H, Rehli M, et al. A promoter-level mam-
malian expression atlas. Nature. 2014;507:462–70. https://doi.or
g/10.1038/nature13182 .

. Satterlee JS, Chadwick LH, Tyson FL, et al. The NIH Common
Fund/Roadmap Epigenomics Program: successes of a compre-
hensive consortium. Sci Adv. 2019;5:eaaw6507. https://doi.org/
10.1126/sciadv.aaw6507 .

. Harrison PW, Amode MR, Austine-Orimoloye O, et al. Ensembl
2024. Nucleic Acids Res. 2024;52:D891–99. https://doi.org/10.109
3/nar/gkad1049 .

. Perkel JM. Why scientists are turning to Rust. Nature.
2020;588:185. https://doi.org/10.1038/d41586- 020- 03382- 2

. Köster J. Rust-Bio: a fast and safe bioinformatics library. Bioin-
formatics. 2016;32:444–46. https://doi.org/10.1093/bioinformati
cs/btv573 .

. Huey JD, Abdennur N. Bigtools: a high-performance BigWig and
BigBed library in Rust. Bioinformatics. 2024;40:btae350. https://
doi.org/10.1093/bioinformatics/btae350 .

. Vijendran S, Anderson T, Markin A, et al. Phylo-rs: an extensible
phylogenetic analysis library in rust. BMC Bioinf. 2025;26:197. ht
tps://doi.org/10.1186/s12859- 025- 06234- w .

. Jha A, Bohaczuk SC, Mao Y, et al. DNA-m6A calling and inte-
grated long-read epigenetic and genetic analysis with fibertools.
Genome Res. 2024;34:1976–86. https://doi.org/10.1101/gr.27909
5.124 .

0. Dale R. Gffutils: GFF and GTF file manipulation and Intercon-
version. GitHub. https://github.com/daler/gffutils/. Accessed 5
Aug 2025.

1. Pertea G, Pertea M. GFF utilities: gffRead and GffCompare.
F1000Res. 2020;9:304. https://doi.org/10.12688/f1000research.2
3297.2 .

2. Chapman B. bcbio-gff. GitHub. v0. 6.4.
3. Dainat J. AGAT: Another Gff Analysis Toolkit to handle annota-

tions in any GTF/GFF format. Zenodo. 2025. https://doi.org/10.5
281/zenodo.3552717 Accessed 5 Aug 2025.

4. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics. 2010;26:841–42. ht
tps://doi.org/10.1093/bioinformatics/btq033 .

5. Lawrence M, Huber W, Pagès H, et al. Software for com-
puting and annotating genomic ranges. PLoS Comput Biol.
2013;9:e1003118. https://doi.org/10.1371/journal.pcbi.1003118 .

6. Chen B, Wu D, Zhang G. GFFx: a Rust-based suite of utilities for
ultra-fast genomic feature extraction. Zenodo. 2025. https://doi.
org/10.5281/zenodo.17143647 . Accessed 20 Aug 2025.

7. Chen B. GFFx_benchmarks. GitHub website. https://github.com
/Baohua-Chen/GFFx_benchmarks . Accessed 20 August 2025.
en Access article distributed under the terms of the Creative Commons Attribution
tion, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1038/s41586-020-2493-4
https://doi.org/10.1038/nature13182
https://doi.org/10.1126/sciadv.aaw6507
https://doi.org/10.1093/nar/gkad1049
https://doi.org/10.1038/d41586-020-03382-2
https://doi.org/10.1093/bioinformatics/btv573
https://doi.org/10.1093/bioinformatics/btae350
https://doi.org/10.1186/s12859-025-06234-w
https://doi.org/10.1101/gr.279095.124
https://github.com/daler/gffutils
https://doi.org/10.12688/f1000research.23297.2
https://doi.org/10.5281/zenodo.3552717
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1371/journal.pcbi.1003118
https://doi.org/10.5281/zenodo.17143647
https://github.com/Baohua-Chen/GFFx_benchmarks
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Findings
	Discussion
	Methods
	Availability of Source Code and Requirements
	Additional Files
	Abbreviations
	Author Contributions
	Funding
	Data Availability
	Competing Interests
	References

