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Main text 8 

Inferring phylogenetic trees from molecular sequences is a cornerstone of evolutionary 9 

biology. Many standard phylogenetic methods (such as maximum-likelihood) rely on 10 

explicit models of sequence evolution and thus often suffer from model 11 

misspecification or inadequacy. The on-rising deep learning (DL) techniques offer a 12 

powerful alternative. Deep learning employs multi-layered artificial neural networks to 13 

progressively transform input data into more abstract and complex representations. DL 14 

methods can autonomously uncover meaningful patterns from data, thereby bypassing 15 

potential biases introduced by predefined features (Franklin, 2005; Murphy, 2012). 16 

Recent efforts have aimed to apply deep neural networks (DNNs) to phylogenetics, 17 

with a growing number of applications in tree reconstruction ( Suvorov et al., 2020; 18 

Zou et al., 2020; Nesterenko et al., 2022; Smith and Hahn, 2023; Wang et al., 2023;), 19 

substitution model selection (Abadi et al., 2020; Burgstaller-Muehlbacher et al., 2023) 20 

and diversification rate inference (Voznica et al., 2022; Lajaaiti et al., 2023; Lambert et 21 

al., 2023). In phylogenetic tree reconstruction, PhyDL (Zou et al., 2020) and 22 

Tree_learning (Suvorov et al., 2020) are two notable DNN-based programs designed to 23 

infer unrooted quartet trees directly from alignments of four amino acid (AA) and DNA 24 

sequences, respectively. These two DNN programs offer pre-built models for 25 

immediate analysis and the flexibility to train new models on user-defined data sets, 26 

with benchmark tests showing performance comparable to or exceeding traditional 27 

phylogenetic methods. However, DNNs encounter challenges as well. It is well known 28 

that the effectiveness of a machine-learning algorithm heavily depends on the input-29 
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data representation (Alzubaidi et al., 2021). Both PhyDL and Tree_learning are 30 

supervised learning methods that need to be trained; however, in molecular 31 

phylogenetics, simulation under explicit models of sequence evolution is the only 32 

realistic source of training data. Therefore, while DNNs can outperform traditional 33 

phylogenetic methods on benchmarks primarily consisting of simulated data 34 

(Leuchtenberger et al., 2020), their performance might be compromised on biological 35 

data, highlighting the need to understand the robustness of DL-based phylogenetic 36 

methods when applied to out-of-distribution data. A recent study suggests that DNNs 37 

struggle to match existing methods on datasets with branch-length and sequence-length 38 

settings that differ significantly from those in the DNN training data (Zaharias et al., 39 

2022). In this study, we critically evaluated PhyDL and Tree_learning using simulated 40 

data, highlighting critical constraints in current deep learning applications in molecular 41 

phylogenetics and proposing suggestions to reduce the risk of inaccurate inferences in 42 

practical use. 43 

 44 

To investigate the strengths and weaknesses of PhyDL and Tree_learning, we first 45 

designed a test to evaluate the performance of pre-built models provided by PhyDL and 46 

Tree_learning, which are likely to be used out-of-the-box by the community (Fig. 1A). 47 

Here, the test data sets were simulated under conditions deliberately selected to avoid 48 

those well covered in the data used to train existing PhyDL and Tree_learning models.  49 

 50 

PhyDL comes with three sets of pre-built DNN models, namely DNN1, DNN2, and 51 
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DNN3, differing in the simulation settings (e.g., heterogeneity level and branch length 52 

distribution) of their training data. All these DNN models were trained with the long-53 

branch attraction (LBA) condition—also known as the Felsenstein zone—considered, 54 

but relatively few long-branch repulsion (LBR) trees—those in the Farris zone—were 55 

included in their training data (Table S1). These DNN models showed comparable or 56 

superior performance than maximum-likelihood (ML) methods and other traditional 57 

phylogenetic methods on data simulated from LBA-susceptible trees (Zou et al., 2020). 58 

We first followed the LBA benchmark design from Zou et al. (2020) to evaluate the 59 

DNN models on data sets simulated under LBA/LBR conditions (Figs.S1–S5; 60 

Supplementary File Text S1). To further examine the performance of DNN models, we 61 

used datasets containing AA alignments simulated with progressively complex models 62 

(LG+F+Γ, LG+C20+F+Γ, and LG+C60+F+Γ) (Wang et al., 2018) based on LBA and 63 

LBR trees (Fig. 1B). We also analyzed these data sets using the ML phylogenetic 64 

program IQ-TREE for comparison. For data simulated under LBA condition, none of 65 

the three PhyDL models had an accuracy above 50%, while all ML phylogenetic 66 

models performed substantially better than DNN models (Figs. 1C, S6). On LBR data 67 

sets, the accuracies were 100% for DNN1 and DNN2 but nearly 0% for DNN3, while 68 

the accuracies of ML models were between 65.00% and 99.97%. Additionally, we 69 

investigated an unexpected performance of DNN3 regarding tree type, noting a high 70 

frequency of “incorrect tree – other” on LBA data and “incorrect tree – LBR-I” on LBR 71 

data (Figs. 1B, 1C, S7; Supplementary File Text S2). Furthermore, our investigation of 72 

the performance of DNN models during their training processes revealed that DNN3 is 73 
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more vulnerable to model fluctuations during training compared to DNN1 and DNN2 74 

(Fig. S8; Supplementary File Text S3). Overall, our results suggest that the DNN 75 

models provided by PhyDL are less accurate than ML phylogenetic models on LBA 76 

data. 77 

 78 

We then employed the approach developed by Trost et al. (2023) to quantify the 79 

disparity between our test data and the pre-built DNN training data. In brief, a Gradient 80 

Boosted Trees (GBT) classifier was trained on one data set (e.g., the DNN1 training 81 

data) and then applied on another (e.g., our LG+F+Γ LBA test data) to calculate a 82 

balanced accuracy (BACC) (Brodersen et al., 2010) value (0 to 1.0, higher values 83 

indicate greater differences) which reflects the difference between the two data sets 84 

(Materials and Methods in Supplementary Text). As a result, the GBT analyses 85 

accurately distinguished each of our test datasets from the training data of pre-built 86 

DNN models (with BACC values above 0.99), indicating substantial differences 87 

between our test data and the original training data (Table S2; Fig. S9).  88 

 89 

In Suvorov et al. (2020), the Tree_learning CNN model trained on gapped data 90 

performed much better than traditional phylogenetic methods on gapped alignments, 91 

likely because it can extract additional phylogenetic signals from gaps (Suvorov et al., 92 

2020). Specifically, gaps in the training and test data were all simulated by INDELible, 93 

and the phylogenetic signals carried by these indel gaps are expected to match the 94 

underlying phylogenies. However, real data often contain random gaps (e.g., due to 95 
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incomplete genome assemblies, partial gene models, or errors in multiple sequence 96 

alignments) that may add noise to phylogenetic analyses. To investigate whether the 97 

inclusion of random gaps might impact the performance of pre-built CNN models, we 98 

first simulated an ungapped data set (NOGAP.ori) and a gapped data set (INDEL.ori) 99 

following the procedures of Suvorov et al., and then created two additional data sets, 100 

NOGAP.extragaps and INDEL.extragaps, by introducing random gaps into the first two 101 

data sets, respectively (Fig. 1D). We applied the CNN model trained on ungapped data 102 

(referred to as “CNN.NOGAP.Ori”) on NOGAP.ori, and the model trained on gapped 103 

data (referred to as “CNN.INDEL.Ori”) on the three data sets with gaps. For 104 

comparison, we analyzed the data using IQ-TREE under two modes, including “IQ-105 

TREE.Standard”, where gaps are treated as missing data with no information, and “IQ-106 

TREE.Recoded”, where gaps are recognized as the fifth character in addition to A, T, 107 

C, and G. Our evaluation of IQ-TREE and Tree-learning models on NOGAP.ori yielded 108 

similar results to those reported by Suvorov et al. (Fig. S10; Supplementary File Text 109 

S4). On INDEL.ori, which includes only indel gaps, CNN.INDEL.Ori and IQ-110 

TREE.Recoded achieved much higher accuracy compared to their performance on 111 

NOGAP.ori, while the accuracy of IQ-TREE.Standard remained unchanged. However, 112 

after random gaps were introduced into the test data, CNN.INDEL.Ori became 113 

substantially less accurate on NOGAP.extragaps and INDEL.extragaps, while the two 114 

IQ-TREE models had nearly the same accuracies (Fig. 1E). Additionally, we also tested 115 

CNN.NOGAP.Ori, CNN.INDEL.Ori and IQ-TREE models across various branch-116 

length combinations (Fig. S11; Supplementary File Text S5). Our results indicated that 117 
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the inclusion of random noisy gaps in our test data impaired the performance of existing 118 

Tree_learning models, rendering them less accurate than IQ-TREE. CNN models 119 

trained on indel gaps likely misinterpreted random gaps as informative characters, 120 

extracting misleading signals as a result.  121 

 122 

In addition to offering pre-built models, both PhyDL and Tree_learning allow users to 123 

train new models using custom data. Therefore, we tested if the performance of PhyDL 124 

and Tree_learning on difficult data sets could be improved by targeted training using 125 

data simulated under the same challenging conditions, either independently or in 126 

conjunction with the original training data (Fig. 1F). Importantly, we examined the 127 

performance of the new models under both target and non-target conditions to better 128 

understand the outcome of this model optimization strategy.  129 

 130 

We first examined if targeted training can produce PhyDL models with better 131 

accuracies under LBA/LBR conditions. We simulated additional LBA and LBR data 132 

sets under LG+C20+F+Γ. These data sets were used to train new DNN models, 133 

including DNN_LBA10K (trained on 10,000 LBA alignments), DNN_LBR10K 134 

(trained on 10,000 LBR alignments), and DNN_60K (training on 30,000 LBA and 135 

30,000 LBR alignments). Additionally, we trained DNN_160K using the DNN_60K 136 

data along with 100,000 alignments simulated similarly to the original DNN3 training 137 

data. These new DNN models were applied on the same test data in our first test (Figs. 138 

1G, S12). DNN_LBA10K demonstrated significantly improved performance on LBA 139 
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data (accuracy exceeding 95%), but showed notable bias when applied to LBR data 140 

(Figs. 1G, S12). A similar trend was observed with DNN_LBR10K, which made 141 

accurate inferences under LBR conditions, but its accuracy dropped on LBA data. We 142 

also found that adding more simulated alignments from a denser sampling of branch 143 

length combinations did not improve the performance of DNN_LBA10K and 144 

DNN_LBR10K (Fig. S13). DNN_60K and DNN_160K demonstrated a more balanced 145 

performance across LBA and LBR conditions, performing between DNN_LBA10K 146 

and DNN_LBR10K on both types of test data (Figs. 1G, S12). Notably, DNN_160K 147 

performed substantially better than DNN3 on our test data, and its accuracy on the 148 

original DNN3 test data (“testing3_mixed”) was still close to that of DNN3 itself (Table 149 

S3). Unlike DNN3, errors made by all new DNN models were mostly of the expected 150 

“incorrect tree – LBA” on LBA data sets, and distributed more evenly between two 151 

types of incorrect trees on LBR data sets (Fig. 1G).  152 

 153 

For Tree_learning, we trained two new CNN models, CNN.NOGAP.Extragaps and 154 

CNN.INDEL.Extragaps, on data sets simulated under the NOGAP.extragaps and 155 

INDEL.extragaps schemes, respectively, and tested their performance on NOGAP and 156 

INDEL data sets with or without random gaps (Fig. 1H). Generally, the best-performing 157 

model for each data set was the one whose training data were simulated in the same 158 

way as the test data. CNN.INDEL.Extragaps had considerably higher accuracy than 159 

CNN.INDEL.Ori on both NOGAP.extragaps (63.43% vs. 38.57%) and 160 

INDEL.extragaps (84.54% vs. 70.16%) (Fig. 1H; Supplementary File Text S6). We 161 
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further enhanced the performance of CNN.INDEL.Ori on random gaps by conducting 162 

additional training with alignments simulated under the INDEL.extragaps scheme. The 163 

fine-tuned model (CNN.Fine-tuned) demonstrated significantly higher accuracy than 164 

the original CNN.INDEL.Ori model on NOGAP.extragaps (68.65% vs. 38.57%) and 165 

INDEL.extragaps (84.83% vs. 70.16%), while maintaining nearly identical 166 

performance to CNN.INDEL.Ori on the ungapped dataset NOGAP.ori (69.42% vs. 167 

69.51%) and exhibiting slightly reduced accuracy on INDEL.ori (85.89% vs. 88.17%) 168 

(Fig. 1H). Additionally, we tested if targeted training can produce Tree-learning models 169 

with better performance under LBA/LBR conditions (TableS4; Supplementary File 170 

Text S7). Our results indicate that our targeted optimization effort has successfully 171 

enhanced the model’s capability to handle random gaps, albeit with a slight compromise 172 

on its performance on phylogenetically informative indels.  173 

 174 

In conclusion, our critical evaluation of PhyDL and Tree_learning provides practical 175 

evidence that ML methods generally outperformed DNN programs, especially when 176 

data properties were unfamiliar to the pre-built DNN models. While DNN performance 177 

can be enhanced by training new models tailored to these specific conditions, this 178 

comes at the cost of reduced generalizability. Additionally, several challenges must be 179 

addressed before DL-based phylogenetic methods can compete with traditional 180 

approaches: first, existing DL methods like PhyDL and Tree_learning can only infer 181 

quartet trees instead of full phylogenies (in cases of more than four sequences); second, 182 

DL methods need to demonstrate their ability to learn patterns from empirical MSAs; 183 
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third, few DL methods can successfully infer branch lengths (Supplementary File Text 184 

S8).  185 

 186 

Based on our results, we recommend assessing the differences between training and test 187 

data prior to conducting tree inference to avoid potential pitfalls in phylogenetic 188 

reconstruction with DNN programs (Fig. 1I). Our examination of the difference 189 

between the pre-built DNN training data and our test data with GBT classifier may 190 

serve as an example (Table S2). Overall, our evaluation provides valuable insights for 191 

the future development of DNN-based phylogenetic methods and offers practical 192 

guidance for their application.  193 

 194 
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All gene alignments and gene trees are available on the figshare repository 196 
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Figure Legends 279 

Fig. 1. Evaluation of deep learning-based phylogenetic inference programs on 280 

simulated datasets. A: Schematics of performance evaluations for pre-built models 281 

conducted in this study. B: Illustrations of the three possible inference outcomes for a 282 

four-sequence AA alignment under LBA or LBR conditions, as inferred by IQ-TREE 283 

and PhyDL models. C: Proportions of different types of trees inferred by IQ-TREE and 284 

PhyDL models from test data sets simulated under LBA or LBR conditions. D: 285 

Schematics of the procedures for simulating the four distinct DNA test datasets used 286 

for tree inference with various IQ-TREE and Tree_learning models. E: Proportions of 287 

correctly inferred trees for various IQ-TREE and Tree_learning models on four 288 

simulated test datasets. F: Schematics of the performance evaluations for custom-289 

trained models conducted in this study. G: Performance of optimized PhyDL models 290 

on simulated protein sequence alignments across various branch length combinations. 291 

H: Performance of new Tree_learning models optimized for the presence of random 292 

gaps on simulated DNA sequence alignments. I: Schematics of a potential solution to 293 

mitigate risks arising from differences between training and testing data.  294 
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