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Abstract 
Maximum likelihood (ML) phylogenetic inference is widely used in phylogenomics. As heuristic 

searches most likely find suboptimal trees, it is recommended to conduct multiple (e.g., ten) tree 

searches in phylogenetic analyses. However, beyond its positive role, how and to what extent 

multiple tree searches aid ML phylogenetic inference remains poorly explored. Here, we found that 

a random starting tree was not as effective as the BioNJ and parsimony starting trees in inferring ML 

gene tree and that RAxML-NG and PhyML were less sensitive to different starting trees than IQ-

TREE. We then examined the effect of the number of tree searches on ML tree inference with IQ-

TREE and RAxML-NG, by running 100 tree searches on 19,414 gene alignments from 15 animal, 

plant, and fungal phylogenomic datasets. We found that the number of tree searches substantially 

impacted the recovery of the best-of-100 ML gene tree topology among 100 searches for a given ML 

program. In addition, all of the concatenation-based trees were topologically identical if the number 

of tree searches was ≥ 10. Quartet-based ASTRAL trees inferred from 1 to 80 tree searches differed 

topologically from those inferred from 100 tree searches for 6 /15 phylogenomic datasets. Lastly, 

our simulations showed that gene alignments with lower difficulty scores had a higher chance of 

finding the best-of-100 gene tree topology and were more likely to yield the correct trees.  

 

Keywords: hill-climbing, heuristic tree search, maximum likelihood, local optima, phylogenomics, 

species tree estimation 
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Introduction 
Reconstructing the evolutionary relationships among organisms is important for understanding the 

patterns and mechanisms of genetic and phenotypic diversity (Hillis et al. 1996; Felsenstein 2003; 

Hamilton 2014; Yang 2014; Li et al. 2022). Because the number of possible trees grows exponentially 

with the number of taxa (Felsenstein 1978), modern phylogenetic inference relies on heuristic 

search algorithms (e.g., hill-climbing algorithms) to infer a nearly optimal tree (Chor and Tuller 2005) 

in the space that consists of all possible unrooted binary trees. Under the maximum-likelihood (ML) 

framework (Felsenstein 1981, 2003), for instance, tree searching is typically an iterative process that 

begins with a starting tree (e.g., a tree inferred by parsimony or distance methods, or a random 

tree), from which a set of candidate trees is generated by rearrangement operations such as 

Nearest-Neighbor-Interchange (NNI) (Robinson 1971), Subtree-Pruning-and-Regrafting (SPR) 

(Swofford et al. 1996), and Tree-Bisection-and-Reconnection (TBR) (Allen and Steel 2001). If a 

candidate tree has a higher log-likelihood score than the starting tree, it will replace the starting tree 

to initiate a new iteration. The tree search process finishes when no tree with a higher log-likelihood 

score can be found and the tree with the highest score is deemed to be the nearly optimal or ML 

tree. 

 

Popular programs for ML phylogenetic inference mainly differ in the rearrangement operations. For 

example, RAxML-NG implements a SPR-based hill-climbing search strategy; at each iteration of tree 

search, it identifies promising re-grafting positions within a certain radius from the pruning position, 

and applies multiple SPR rearrangements simultaneously to speed up the inference. IQ-TREE initially 

maintains a pool of 20 best candidate trees, determined from one BioNJ starting tree (Gascuel 1997) 

and 99 parsimony starting trees. Each iteration starts with a tree that is selected at random from the 

pool, the tree topology is stochastically perturbed and used as the starting tree for a NNI-based hill-

climbing tree search. The analysis finishes if no better tree can be found for multiple iterations. 

PhyML utilizes both types of rearrangement operations successively; it first performs a SPR-based 

hill-climbing tree search, and the resulting tree is further improved by NNI-based hill-climbing. 

Because the search strategy is heuristic, it is not guaranteed that this ML tree is the one with the 

globally highest score. A standard solution to increasing the chance of finding a better ML tree is to 

conduct multiple independent tree searches, each from a different starting tree or a different 

random seed, in current fast ML-based programs such as IQ-TREE (Nguyen et al. 2015; Minh et al. 

2020), MEGA (Tamura et al. 2011; Kumar et al. 2016), PhyML (Guindon and Gascuel 2003; Guindon 

et al. 2010), and RAxML/RAxML-NG (Stamatakis 2014; Kozlov et al. 2019). 

 

Several previous studies have extensively examined the efficacy of different rearrangement 

operations on ML tree inference (e.g., Vinh and Haeseler 2004; Morrison 2007; Money and Whelan 

2012). For example, Money and Whelan (Money and Whelan 2012) found that NNI performed 

poorly in finding the nearly optimal tree compared to SPR. In light of this result, IQ-TREE (Nguyen et 

al. 2015; Minh et al. 2020), one of the state-of-the-art ML-based programs, overcomes the weakness 

of NNI-based tree search by implementing a broad sampling of initial starting trees and random 

perturbation of current best trees. In addition, many previous studies have examined the efficacy of 

different fast ML-based programs on ML tree inference (Liu et al. 2011; Nguyen et al. 2015; Zhou et 
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al. 2018; Kozlov et al. 2019; Park et al. 2021). For example, a recent analysis (Zhou et al. 2018) of 19 

empirical phylogenomic datasets showed that IQ-TREE, PhyML, and RAxML had comparable 

performance when conducting ten tree searches on each alignment.  

 

A potential drawback of almost all of the previous studies is that they used no more than 20 tree 

searches, leaving the effect of varying the number of tree searches on ML phylogenetic inference 

under-investigated. To address this gap, we performed 100 tree searches for each of the 19,414 

single-gene alignments in 15 animal, plant, and fungal phylogenomic datasets and 20,000 simulated 

gene alignments (Shen et al. 2020; Höhler et al. 2022a). Then, we asked two questions: (i) How does 

the number of tree searches affect the performance of finding the best ML tree? (ii) Are extensive 

tree searches in ML phylogenetic inference necessary? Our results reveal that variation in number of 

tree searches can substantially influence ML tree inference and that the difficulty score (Haag et al. 

2022) could be a useful predictor for roughly estimating the necessary number of tree searches for 

ML inference.  

 

Results 

Different ML phylogenetic programs could have different tree search algorithms, resulting in varying 

numbers of tree searches during a single default run. For example, RAxML-NG’s default run initiates 

with 10 parsimony starting trees and 10 random starting trees, followed by conducting one tree 

search on each starting tree. Ultimately, it produces the best ML tree from a total of 20 tree 

searches. IQ-TREE’s default run begins with one BioNJ starting tree and 99 parsimony starting trees, 

followed by iteratively conducting tree searches on a pool of 20 best candidate trees throughout the 

analysis. In the end, it produces the best ML tree, determined from a stochastic number of tree 

searches. In this study, following the strategy of a recent study (Kozlov et al. 2019), we defined one 

tree search as using one starting tree for both RAxML-NG and PhyML and using one run for IQ-TREE. 

Note that the effect of varying the number of starting trees on ML phylogenetic inference is not 

directly comparable across different ML programs due to the variation in the number of tree 

searches performed by different ML programs. In addition, we had no intention of comparing 

likelihood scores or topological accuracies of different ML programs in this study. Therefore, our 

assessment solely focused on the effect of the number of tree searches on ML phylogenetic 

inference within a given ML program. 

 

The effect of different starting trees on single-gene tree inference 

As ML phylogenetic inference begins with a starting tree, we first investigated the effect of different 

starting trees on single-gene ML tree inferences. For each gene alignment, we conducted one 

independent tree search from a BioNJ tree, a parsimony tree, or a random tree using 1 CPU on a 

single compute node (AMD EPYC 7662 @ 2.0 GHz processor with 128 threads). We sampled 200 

genes from each of 15 animal, plant, and fungal phylogenomic datasets since executing all of the 

tree searches on the same node was computationally expensive (Table 1). Thus, for each of 3,000 

gene alignments, we used three different starting trees to infer three ML gene trees and denoted 
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the ML gene tree with the highest log-likelihood score as the best-of-3 ML gene tree topology within 

a given ML program. We then examined the fractions of the 3,000 single gene alignments for which 

the best-of-3 gene tree topology was found, which we refer to as the "recovery rate". Note that the 

recovery rate was not comparable between IQ-TREE, RAxML-NG, and PhyML, as the best-of-3 ML 

gene tree topology was determined independently for each ML program.  

 

Overall, we found that in terms of recovery rates, the random starting tree was less efficient in 

finding the best-of-3 ML gene tree topology for IQ-TREE, as compared with the BioNJ starting tree 

and the parsimony starting tree (Fig. 1a). RAxML-NG and PhyML were less sensitive to different 

starting trees (Fig. 1a). Among the 15 phylogenomic datasets, different starting trees exhibited 

varying recovery rates for a given ML program. Notably, IQ-TREE displayed greater variation in 

recovery rate across the three different starting trees, especially for phylogenomic datasets with 

larger numbers of taxa (e.g., Bees, Birds, Butterflies, Green plants, and Budding yeasts) (see 

Supplementary Fig. S1). This observation is likely attributed to the fact that IQ-TREE employs an NNI-

based hill-climbing tree search, which explores a less extensive tree-searching space compared to 

the SPR-based hill-climbing tree search (Zhou et al. 2018).  

 

In addition, as we executed all tree searches using 1 CPU on the same compute node, we can fairly 

compare the runtimes of inferring ML gene trees across different starting trees and different ML 

programs. Overall, we found that the use of random starting tree had slightly longer runtimes than 

the uses of BioNJ starting tree and parsimony starting tree within a given ML program (Fig. 1b and 

Supplementary Fig. S2). RAxML-NG on average ran the fastest, followed by IQ-TREE and PhyML (Fig. 

1b and Supplementary Fig. S2).  

 

The number of tree searches substantially influences the identification of single-gene 

trees with the highest log-likelihood scores 

We investigated the effect of varying the number of tree searches on ML phylogenetic inference 

through an extensive analysis of all 19,414 single-gene alignments from 15 animal, plant, and fungal 

phylogenomic datasets (Table 1). For each of 19,414 single-gene alignments, we conducted 100 tree 

searches using 100 runs for IQ-TREE v1.6.12 and using 50 parsimony starting trees and 50 random 

starting trees for RAxML-NG v0.9.0, following the tree search strategy of a recent study (Kozlov et al. 

2019). Because executing 100 tree searches from a single command line is computationally 

expensive, we chose to partition them into five sets. Each set involved running 20 tree searches, 

with IQ-TREE utilizing the option "-runs 20 -seed random number " and RAxML-NG utilizing the 

option "--tree pars{10},rand{10} --seed random number" (see Supplementary Text for details). In 

brief, RAxML-NG performs one tree search on each of 20 starting trees using the SPR rearrangement 

operation. For each of 20 runs in IQ-TREE, it starts with one BioNJ starting tree and 99 parsimony 

starting trees and then maintains a pool of 20 best candidate trees to conduct one tree search using 

the NNI rearrangement operation. Due to differences in tree search algorithms between IQ-TREE 
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and RAxML-NG, it is important to note that the results regarding the impact of varying the number 

of tree searches on ML phylogenetic inference are not directly comparable between the two 

programs. 

 

After obtaining 100 single-gene ML trees labeled with R1 to R100 for each of 19,414 gene alignments 

within a given ML program, we considered the ML gene tree with the highest log-likelihood score as 

the best-of-100 ML gene tree topology and asked which runs achieved the best-of-100 ML gene tree 

topologies. Among the 19,414 gene alignments, we observed that 938 (4.8%) for IQ-TREE and 781 

(4.0%) for RAxML-NG produced the best-of-100 ML gene trees that had equal highest log-likelihood 

scores but different topologies. In theory, distinct gene topologies should not share identical log-

likelihood scores; however, it is well known that ML programs have limited numerical precision for 

log-likelihood score calculation. This could lead to different gene topologies having identical log-

likelihood scores in the output files (Haag et al. 2023). Given that the proportion of gene alignments 

with identical highest log-likelihood scores but different topologies was relatively small, we included 

them in subsequent analyses.  

 

Next, we examined the recovery rate, that is the fraction of the 19,414 single-gene alignments for 

which the best-of-100 ML gene tree topologies were found for a given number of tree searches. 

Overall, the recovery rates were ~51% for the 19,414 IQ-TREE-inferred gene trees and ~42% for the 

19,414 RAxML-NG-inferred gene trees when using one tree search (Fig. 2 and Supplementary Table 

S1). The recovery rate increased to 69% for the 19,414 IQ-TREE-inferred gene trees and ~64% for the 

19,414 RAxML-NG-inferred gene trees when using ten tree searches, which is computationally 

tractable for most phylogenomic data matrices (Fig. 2). Among the 15 phylogenomic datasets 

examined, the recovery rates at ten tree searches varied between 10% and 99.5% with an average 

value of 54.7% for IQ-TREE and between 8% and 99% with an average value of 49.5% for RAxML-NG 

(Fig. 2). In addition to the recovery rate metric, we also calculated the probability (p) of finding the 

best-of-100 ML gene tree topology for a given number of tree searches (n) for each gene alignment. 

The probability (p) is         , where f is the fraction of the best-of-100 ML gene tree 

topologies observed out of 100 tree searches. It is important to note that the recovery rate metric (f) 

and the probability (p) serve different purposes. The former is an actual observed value and the 

latter is a predicted value based on the observed fraction. Among the 15 phylogenomic datasets, 

both the probability (p) and the recovery rate metric (f) demonstrated similar trends in evaluating 

the chance of finding the best-of-100 ML gene tree topologies (Supplementary Fig. S3), while they 

exhibited variation in the chance of finding the best-of-100 ML gene tree topologies at different 

numbers of tree searches. 

 

As expected, we found that, with an increasing number of tree searches, both IQ-TREE- and RAxML-

NG-inferred gene trees increased log-likelihood scores and were topologically more similar to the 

best-of-100 ML gene tree topologies (Fig. 3a and 3b and Supplementary Figs. S4 and S5). To examine 

whether the best-observed gene tree topology found from 1 to 80 significantly differed from the 

best-of-100 gene tree topology, we used the approximately unbiased (AU) test (Shimodaira 2002) to 
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evaluate whether the best-observed gene tree topology and the best-of-100 gene tree topology 

could equally explain the gene alignment (null hypothesis H0). We found that number of the best-

observed gene tree topologies that had significantly lower log-likelihood scores than the best-of-100 

gene tree topologies (AU test; P-value ≤ 0.05) decreased with an increasing number of tree searches 

for the 19,414 single gene alignments (Fig. 3c and Supplementary Fig. S6). When evaluating the 

changes in log-likelihood scores and gene tree topological similarity across different numbers of tree 

searches, we observed the biggest improvement from R1 to R10 (Fig. 3). 

 

To explore the underlying causes of the varying chances of finding the best-of-100 ML gene tree 

topology, we divided the 19,414 single-gene alignments from 15 phylogenomic studies into eleven 

groups according to the number of the best-of-100 ML gene tree topologies observed out of 100 

tree searches (Fig. 4a and Supplementary Fig. S7). Next, for each of the eleven groups of gene 

alignments, we examined five characteristics: difficulty score of the gene alignment predicted by 

Pythia v1.1.2 (Haag et al. 2022), which integrates eight features such as parsimony trees, entropy, 

and alignment attributes to quantify the degree of difficulty for analyzing a gene alignment prior to 

initiating ML tree inference; parsimony-informative sites in gene alignment; average bootstrap 

support across the best-of-100 ML gene tree topology; percentage of internal branches with high 

bootstrap support values; and percentage of internal branches with near-zero lengths. Overall, we 

found that gene alignments with lower chances of finding the best-of-100 ML gene tree topologies 

tended to have higher difficulty scores (Fig. 4b), lower numbers of parsimony-informative sites (Fig. 

4c), lower average bootstrap support values (Fig. 4d), lower percentages of internal branches with 

high bootstrap support values (Fig. 4e), and higher percentages of internal branches with near-zero 

lengths (Fig. 4f). We observed similar trends within each of 15 phylogenomic datasets 

(Supplementary Figs. S8-S12). Furthermore, we examined the correlation between the chance of 

finding the best-of-100 ML gene tree topology and each of five characteristics and found that the 

difficulty score exhibited the strongest correlation with the chance of finding the best-of-100 ML 

gene tree topology (Supplementary Fig. S13 and Supplementary Table S2). Finally, we found that the 

majority (IQ-TREE: 67.44%; RAxML-NG: 62.77%) of gene alignments with a ≤ 10% chance of finding 

the best-of-100 ML gene tree topology were characterized as difficult datasets (Supplementary Fig. 

S14a). In contrast, the majority (IQ-TREE: 65.49%; RAxML-NG: 76.61%) of gene alignments with a ≥ 

90% chance of finding the best-of-100 ML gene tree topology were characterized as easy datasets 

(Supplementary Fig. S14b). Although predicting the number of tree searches required to find the 

best-of-100 ML gene tree topology is quite challenging (Vinh and Haeseler 2004; Haag et al. 2022; 

Höhler et al. 2022a), our results along with a recent finding (Togkousidis et al. 2023) suggested that 

the difficulty score could be a useful predictor for roughly estimating the necessary number of tree 

searches for ML inference. 
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The effect of the number of tree searches on concatenation- and quartet-based species 

tree inferences 

We next assessed the effect of the number of tree searches on concatenation- and quartet-based 

species tree inferences. Given the difference in algorithm between concatenation- and quartet-

based approaches we used, we did not directly compare the concatenation-based species trees with 

the quartet-based species trees inferred with different numbers of tree searches.  

 

We first assessed the effect of the number of tree searches on concatenation-based species tree 

estimations. For each phylogenomic dataset, we used 100 tree searches to reconstruct 

concatenation-based ML trees with IQ-TREE and RAxML-NG (see Supplementary Text for details), 

respectively. The green plant phylogenomic data set was left out due to its very large number of taxa 

(1,178), because inferring concatenation-based ML tree searches for the green plant phylogenomic 

data set using IQ-TREE and RAxML-NG on a 48-CPU node failed to finish after five months. Overall, 

the recovery rate of the best-of-100 concatenation-based ML tree topology was ~79% (11 / 14 

datasets) for IQ-TREE and ~71% (10 / 14 datasets) for RAxML-NG when using one tree search (Fig. 

5a), and 100% for both IQ-TREE and RAxML-NG when the number of tree searches was equal to or 

greater than ten (Fig. 5a, Supplementary Fig. S15, and Supplementary Table S3). These results 

suggest that the use of ten tree searches is sufficient to generate the best-of-100 concatenation-

based ML tree topology.  

 

We then examined the effect of varying numbers of tree searches on quartet-based species tree 

estimations for each of the 15 phylogenomic datasets. For each phylogenomic dataset, we inferred 

the quartet-based species phylogeny on the set of all the best-observed gene tree topologies 

inferred from 1 to 100 tree searches by weighting the branch support and branch length with the 

wASTRAL-h v1.3 (Zhang and Mirarab 2022). Here, we considered the ASTRAL tree reconstructed 

from the set of single gene trees inferred by 100 tree searches as the ASTRAL reference tree for each 

dataset. Note that the ASTRAL phylogenies were not directly comparable between IQ-TREE and 

RAxML-NG. This is because the single-gene trees used as input for ASTRAL estimations were 

independently inferred by each respective ML program. Overall, ASTRAL trees inferred using R1, 

R10, R20, R40, R60, and R80 showed increasing topological similarities to the ASTRAL reference trees 

(from 96% to 99% for IQ-TREE and from 91% to 98% for RAxML-NG) (Fig. 5b, Supplementary Fig. S16, 

and Supplementary Table S4). Notably, for six of the 15 phylogenomic datasets (e.g., Bees and Green 

plants) that had larger numbers of taxa than the remaining nine datasets (e.g., Rodents and Budding 

yeasts) (on average, the former has 327 taxa and the latter has 84 taxa), all ASTRAL trees inferred 

from 1 to 80 tree searches differed topologically from the ASTRAL reference trees inferred from 100 

tree searches (Supplementary Fig. S16). 

 

To further examine whether more tree searches would benefit the branch support and branch 

length estimations in quartet-based species phylogeny, we compared each inferred ASTRAL tree 
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(using R1, R10, R20, R40, R60, or R80) with the ASTRAL reference tree (using R100) and examined 

the supports and lengths of congruent and conflicting internal branches, respectively. We found that 

the mean support values and mean branch lengths of all congruent internal branches increased as 

the number of tree searches increased (Fig. 5c and 5d and Supplementary Figs. S17 and S18), while 

the mean support values and mean branch lengths of all conflicting internal branches decreased as 

the number of tree searches increased. These results suggest that increasing the number of tree 

searches in single-gene tree inferences could benefit the branch support and branch length 

estimations in the ASTRAL species phylogeny. 

 

Genes with lower difficulty scores had a higher chance of finding the best-of-100 ML 

gene tree topologies and were more likely to recover the correct trees 

Since the true single-gene phylogenies for the 15 empirical phylogenomic datasets are unknown, it is 

impossible to precisely assess whether the best-observed gene tree topologies achieved with 

increasing numbers of tree searches would be more accurate. To address this issue, we adopted 

20,000 simulated DNA sequence alignments from a previous study (Höhler et al. 2022a), in which 

each gene alignment was simulated on the empirical data-derived gene tree and the model 

parameters in the RAxMLGrove database (Höhler et al. 2022b). For each of 20,000 simulated DNA 

sequence alignments, we conducted 100 tree searches using 100 runs for IQ-TREE, 50 parsimony 

starting trees and 50 random starting trees for RAxML-NG, and one BioNJ starting tree, 50 

parsimony starting trees and 49 random starting trees for PhyML (see Supplementary Text for 

details), respectively. 

 

Analysis of these 20,000 simulated DNA sequence alignments showed that the recovery rate (that is 

the fraction of the 20,000 simulated gene alignments that recovered their best-of-100 ML gene tree 

topologies for a given number of tree searches) increased with increasing number of tree searches 

(Fig. 6a and Supplementary Table S5). Consistent with the findings from the 19,414 empirical gene 

alignments, we also found that the difficulty score of the simulated sequence alignment also 

exhibited the strongest correlation with the chance of finding the best-of-100 ML gene tree topology 

(Supplementary Fig. S19 and Supplementary Table S6). Therefore, following a previous study 

(Togkousidis et al. 2023), we divided the 20,000 simulated DNA gene alignments into three groups: 

the easy alignments (9,560 genes with difficulty scores below 0.3), the intermediate alignments 

(8,926 genes with difficulty scores between 0.3 and 0.7), and the difficult alignments (1,514 genes 

with difficulty scores above 0.7). As expected, we found that the easy alignments tended to have the 

highest recovery rates of finding the best-of-100 ML gene tree topologies than the intermediate and 

difficult alignments (Fig. 6a). 

 

Next, we examined the difference in log-likelihood scores between the best-observed gene tree 

topologies inferred from R1, R10, R20, R40, R60, R80, and R100 and the true gene trees, 

respectively. We found that the vast majority (83.9% for IQ-TREE, 83.7% for RAxML-NG, and 77.8% 
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for PhyML) of 20,000 inferred gene trees had higher log-likelihood scores than the true gene trees 

(Fig. 6b). Furthermore, we noted a rise in the count of gene trees with higher log-likelihood scores 

than the true gene trees as the number of tree searches increased for RAxML-NG and PhyML. 

However, for IQ-TREE, the number of gene trees with higher log-likelihood scores than the true gene 

trees remained relatively constant across 100 tree searches (Fig. 6b). These results suggest that 

RAxML-NG and PhyML outperform IQ-TREE in terms of likelihood optimization. In addition, we used 

the approximately unbiased (AU) test to evaluate whether the best-observed gene tree topology had 

a significantly higher log-likelihood score than the true tree or not. Our results show that among 

20,000 inferred gene trees, 3,650 (18.25%) IQ-TREE-inferred gene trees, 3,346 (16.73%) RAxML-NG-

inferred gene trees and 3,040 (15.20%) PhyML-inferred gene trees had significantly higher log-

likelihood scores than the true gene trees (AU test; P-value ≤ 0.05) when using one tree search 

(Supplementary Fig. S20). As expected, with an increase in the number of tree searches, the 

percentage of the best-observed gene tree topologies that had significantly higher log-likelihood 

scores than the true gene trees increased, albeit weaker in magnitude (Supplementary Fig. S20).  

 

To further investigate the topological accuracies of the best-observed gene tree topologies inferred 

from R1, R10, R20, R40, R60, R80, and R100, we examined the accuracy as measured by the quartet 

similarity between the inferred best-observed tree topology and the true tree using the R package 

Quartet v1.2.5 (Smith 2019). Overall, we found that the mean topological accuracy was 93.37 % for 

the IQ-TREE-inferred gene trees, 93.29 % for the RAxML-NG-inferred gene trees, and 93.23 % for the 

PhyML-inferred gene trees, when using one tree search (Fig. 6c) for all 20,000 simulated alignments. 

As the number of tree searches increased, RAxML-NG and PhyML demonstrated an increase in mean 

topological accuracy, whereas IQ-TREE exhibited a gradual decrease in mean topological accuracy 

(albeit with a weaker magnitude of change). This trend is consistent with observations in the easy 

datasets but not in the intermediate and difficult datasets (Fig. 6c). In the intermediate and difficult 

datasets, RAxML-NG and PhyML displayed an increase in mean topological accuracy from R1 to R10, 

but they gradually decreased their mean topological accuracies after R10. IQ-TREE gradually 

decreased the mean topological accuracies from R1 to R100, although it outperforms RAxML-NG and 

PhyML in terms of mean topological accuracy. Lastly, we found that inferred gene trees on the easy 

alignments tended to be topologically more similar to the true trees than those on the intermediate 

alignments and the difficult alignments (Fig. 6c). Collectively, our findings indicate that: (1) easy gene 

alignments have a higher chance of finding the best-of-100 ML gene tree topology; (2) these 

alignments tend to generate more topologically accurate gene trees; and (3) the accuracies of their 

inferred gene trees increase with increasing number of tree searches, although this improvement is 

program-dependent. For more difficult gene alignments, there is a noticeable pattern of overfitting, 

particularly with IQ-TREE at R1 and RAxML-NG and PhyML at R10, where these methods perform 

slightly better than at R100. The overfitting tendencies observed are relatively small, with 

differences in mean topological accuracy being less than 1%.  
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Discussion 

This study aimed to uncover the effect of the number of tree searches on ML phylogenetic inference 

in phylogenomics. To achieve this goal, we carried out computationally extensive analyses of 19,414 

single-gene alignments from 15 phylogenomic datasets. These 15 phylogenomic datasets, with the 

number of taxa ranging from 15 to 343, along with the green plant dataset containing 1,178 taxa, 

represent different data types (non-coding DNA, coding DNA, and amino acid) and cover a broad 

taxonomic range from genus to phylum. In addition, we used 20,000 simulated DNA sequence 

alignments, with the number of taxa ranging from 4 to 469 and an average of 69, to examine the 

effect of varying the number of tree searches on the accuracy of single-gene tree estimation. To our 

knowledge, our work represents the most comprehensive investigation on this topic to date in terms 

of both breadth and depth. 

 

Do different starting trees affect ML phylogenetic inference? Modern ML phylogenetic inference 

typically begins with a starting tree and then executes an iterative, hill-climbing process using the 

rearrangement operations, to infer a nearly optimal tree (Chor and Tuller 2005). Our results show 

that when one independent tree search was executed using 1 CPU for a given ML program, the 

random starting tree was less efficient in finding the best-of-3 ML gene tree than the BioNJ and 

parsimony starting trees. Furthermore, the use of random starting tree had slightly longer runtimes 

than the uses of BioNJ and parsimony starting trees. Lastly, the random starting tree generally is 

more different from the ML tree than the BioNJ and parsimony starting trees. Therefore, we suggest 

that considering BioNJ as one of the starting trees in current fast ML-based programs, such as 

RAxML-NG, would be helpful. 

  

What is the general impact of the number of tree searches on ML phylogenetic inference? Our study 

found that ~69% of single-gene trees achieved their highest log-likelihood scores with ten tree 

searches (R10), which is computationally tractable for most phylogenomic studies. However, with 

R10, it is very rare for single-gene trees to reach their highest log-likelihood scores for four animal 

datasets (Bees, Birds, Butterflies, and Marine fishes), one plant dataset (Green plants), and one 

fungal dataset (Budding yeasts), all of which contain >100 taxa. As single-gene trees are commonly 

used as input for species tree estimations, such as quartet-based ASTRAL species phylogeny (Mirarab 

et al. 2014; Zhang et al. 2018; Zhang and Mirarab 2022), we assessed the influence of the number of 

tree searches on the ASTRAL estimation. We found that all ASTRAL species phylogenies 

reconstructed on single-gene trees inferred using 1, 10, 20, 40, 60, or 80 tree searches differed 

topologically from the ASTRAL species phylogeny reconstructed on single-gene trees inferred using 

100 tree searches for 6 /15 phylogenomic datasets, although the differences in topology were 

usually small. Given that quartet-based species tree estimation relies on the accuracy of single-gene 

tree estimations, our results suggest that quartet-based analyses could take into account the effect 

of varying numbers of tree searches on single-gene ML tree estimations. Specifically, conducting 

more tree searches would at least benefit the branch support and branch length estimations in 
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quartet-based species phylogeny. In addition, our results suggest that the use of ten tree searches is 

sufficient to generate a robust ML tree for concatenation-based analysis.  

 

Is conducting extensive tree searches in ML phylogenetic inference necessary? Our results suggest 

that increasing the number of tree searches improves log-likelihood score. At the same time, the 

marginal return of conducting more than ten tree searches varied substantially among 15 

phylogenomic data sets. Furthermore, both empirical and simulated datasets showed that the 

difficulty score of gene alignments exhibited the strongest correlation with the chance of finding the 

best-of-100 ML gene tree topologies. Easy gene alignments are more likely to discover the best-of-

100 ML gene tree topologies and produce more accurate phylogenies compared to intermediate and 

difficult gene alignments. A recent phylogenetic study demonstrated that the difficulty score can 

directly reflect the amount of phylogenetic signal in the input gene alignment (Togkousidis et al. 

2023). Based on the results from simulation datasets, for easy gene alignments (e.g., difficulty score 

≤ 0.3) increasing the number of tree searches is beneficial for ML phylogenetic inference in terms of 

likelihood optimization and topological accuracy. Conversely, for intermediate and difficult gene 

alignments, extensive tree searches may be unnecessary or detrimental. 

  

In summary, our study solely investigated how the number of tree searches influences ML 

phylogenetic inference within each program, rather than comparing across different ML programs. 

Since different ML phylogenetic programs involve varying numbers of tree searches during a single 

default run, fairly comparing the effects of the number of tree searches on ML phylogenetic 

inference across different programs would require ensuring an equal amount of running time. In 

addition, we found that difficulty score could serve as a useful predictor for estimating the necessary 

number of tree searches (Togkousidis et al. 2023). If computational resources permit, conducting at 

least 20 tree searches is recommended for IQ-TREE, and at least 10 tree searches for RAxML-NG and 

PhyML.  

 

Material and Methods 

Empirical phylogenomic datasets 
We downloaded all 19,414 gene alignments from 15 phylogenomic studies in animals (6), plants (5), 

and fungi (4) as of 10 March 2021 

(https://figshare.com/articles/dataset/Irreproducibility_of_maximum_likelihood_phylogenetic_infer

ence/11917770?file=24764333) from a recent phylogenomic study (Shen et al. 2020) (Table 1). 

These 15 phylogenomic datasets were constructed using five different gene sampling approaches, 

namely Ultraconserved Element (UCE) capture, Anchored Hybrid Enriched (AHE) capture, conserved 

exon capture, transcriptome sequencing, and whole genome sequencing. They also represented a 

wide range of data types (non-coding DNA (DNA), exon (DNA), and amino acid (AA)) and a broad 

taxonomic range from genus to phylum. All 19,414 gene alignments in FASTA form can be found on 

the figshare repository (http://dx.doi.org/10.6084/m9.figshare.17086259).  
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Assessment of effect of different starting trees on maximum likelihood gene tree 

inferences 

To investigate the effect of different starting trees on the single-gene ML tree inferences, we 

conducted one independent tree search from BioNJ tree, parsimony tree, or random tree for IQ-

TREE version 1.6.12 (Nguyen et al. 2015), RAxML-NG version 0.9.0 (Kozlov et al. 2019), and PhyML 

version 3.3.20220408 (Guindon et al. 2010), each using 1 CPU on the same compute node (AMD 

EPYC 7662 @ 2.0 GHz processor with 128 threads). Since executing all tree searches on a single node 

was computationally expensive, we sampled 200 genes from each of 15 animal, plant, and fungal 

phylogenomic datasets (Table 1). The total number of gene alignments is 3,000.  

 

For each gene alignment, we first generated three different starting trees including BioNJ tree, 

parsimony tree, and random tree. Next, for each of three different starting trees, we executed one 

independent ML tree search using IQ-TREE, RAxML-NG, and PhyML, respectively. Thereby we 

obtained three ML trees inferred from three starting trees for each of 3,000 gene alignments. Last, 

for a given gene alignment and a given ML program, we denoted the ML gene tree with the highest 

log-likelihood score as the best-of-3 ML gene tree topology within a given ML program. The specific 

command line instructions and parameter settings for generating three different starting trees and 

executing ML gene tree inferences are given in the Supplementary text. 

 

Assessment of effect of varying numbers of tree searches on the performance of finding 

gene tree with the highest log-likelihood score 

To take into account variation that may stem from different tree rearrangement algorithms used in 

heuristic search, we used both the NNI-based IQ-TREE and the SPR-based RAxML-NG to assess the 

effect of varying numbers of tree searches on the performance of finding gene tree with the highest 

log-likelihood score.  

 

Given that the true highest likelihood score is unknown and that increasing the number of tree 

searches in heuristic searches is computationally very expensive, we limited the number of tree 

searches to 100, which is much higher than the number of tree searches used in all 15 original 

phylogenomic studies. To conduct 100 tree searches for all 19,414 alignments, we divided them into 

five sets, with each set running 20 tree searches. Following the tree search strategy of a recent study 

(Kozlov et al. 2019), we ran 20 tree searches with IQ-TREE utilizing the option "-runs 20 -seed 

random number " and RAxML-NG utilizing the option "--tree pars{10},rand{10} --seed random 

number". Two examples of the specific command line instructions and parameter settings for 

running 100 tree searches in IQ-TREE and RAxML-NG for a DNA sequence alignment and an amino 

acid alignment are given in the Supplementary text. 
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Overall, we executed 194,140 jobs (19,414 alignments * 5 times * 2 ML programs). Each job was run 

on a single node with 2 threads and 2 GB RAM on the Center for High Throughput Computing (CHTC) 

at the University of Wisconsin-Madison and the Center for Engineering and Scientific Computation 

(CESC) at Zhejiang University  

 

Note that, the log-likelihood scores typically differ among distinct ML inference tools due to different 

round-off error propagation or subtle differences in the numerical implementation of model 

parameter optimization routines. In order to avoid a possible bias, we chose to re-evaluate log-

likelihood scores of 100 IQ-TREE-inferred gene trees and 100 RAxML-NG-inferred gene trees for each 

gene alignment with IQ-TREE. For a given gene alignment, once 100 extensive tree searches were 

completed, their log-likelihood scores were re-calculated using iqtree (iqtree -safe -nt 2 -
seed 369284957 -quiet -me 0.0001 -m $model -s $fas_id.fasta -te $in.tre -

pre $pre_id; note that the “-me” option specifies that the log-likelihood scores are calculated 

from a precision of four decimal places) on a laboratory server. We then labeled the 100 runs with 

R1 to R100 and recorded which runs achieved the highest log-likelihood scores (we referred them as 

best-of-100 ML gene tree). Specifically, we compared each of the gene trees (R1 to R100) against the 

best-of-100 ML tree topology in terms of topology and log-likelihood score. For a given run, we 

considered the gene tree as the best-of-100 tree topology if (i) its topology was identical to that of 

the best-of-100 ML tree topology; or (ii) if its log-likelihood score was identical to the highest log-

likelihood score, despite of any topological differences. Note that ML programs have limited 

numerical precision for log-likelihood score calculation, which could lead to different gene 

topologies having identical log-likelihood scores in output files (Haag et al. 2023). 

 

Assessment of effect of varying numbers of tree searches on concatenation- and quartet-

based species tree estimations 

Since running 100 tree searches for the concatenation-based ML inference is computationally 

very expensive, we sampled the first 200 genes from each of 15 phylogenomic datasets. For 

each of the 15 phylogenomic studies, we first concatenated each study’s 200 genes into a 

supermatrix and then ran 100 tree searches for inferring concatenation-based species 

phylogeny using IQ-TREE and RAxML-NG. 

 

The command line instructions and parameter settings for running 100 tree searches for a 

supermatrix in IQ-TREE and RAxML-NG are exactly same to those used for a single gene alignment, 

except for the number of threads. Running 100 tree searches for a supermatrix used 16 threads (“-nt 

16” in IQ-TREE; “--threads 16” in RAxML-NG) instead of two threads as for single gene alignment 

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article/doi/10.1093/sysbio/syae031/7700958 by Zhejiang U

niversity user on 01 July 2024



Acc
ep

ted
 M

an
us

cri
pt

analyses (“-nt 2” in IQ-TREE; “--threads 2” in RAxML-NG). Two examples of the specific command 

line instructions and parameter settings for running 100 tree searches in IQ-TREE and RAxML-NG for 

DNA and amino acid supermatrices are given in the Supplementary text. 

 

Note that only 14 concatenation-based species phylogenies were successfully used to investigate the 

effect of varying numbers of tree searches on concatenation-based species tree estimations, 

because inferring 100 concatenation-based ML tree searches for the green plant phylogenomic data 

set (200 genes and 1,178 taxa – by far the largest in its number of taxa) using IQ-TREE and RAxML-

NG on a 48-CPU node failed to finish after five months. All analyses of concatenation-based species 

trees were executed on four laboratory servers. All 14 supermatrices and their concatenation-based 

species trees are available on the figshare repository.  

 

For each of the 15 phylogenomic studies, we also reconstructed their quartet-based species trees 

from all individual gene trees with wASTRAL-h v1.3 (Zhang and Mirarab 2022), a weighted ASTRAL 

(Mirarab et al. 2014; Zhang et al. 2018) program that takes into account phylogenetic uncertainty by 

integrating signals from branch length and branch support in the set of input gene trees to improve 

quartet-based species tree inference (Zhang and Mirarab 2022). To investigate the effect of varying 

numbers of tree searches on quartet-based species tree estimations, we created seven sets of the 

best-observed gene tree topologies inferred using 1, 10, 20, 40, 60, 80, or 100 tree searches and 

then reconstructed their quartet-based species trees with wASTRAL-h. All 105 sets of gene trees (15 

studies *7 sets) and their quartet-based species trees are available on the figshare repository. The 

specific command line instructions and parameter settings for inferring their quartet-based ASTRAL 

species trees are given in the Supplementary text. 

 

Using simulated data to examine the accuracy of gene tree estimation in relation to the 

number of tree searches 

To examine the difference between the best-of-100 tree topologies that had different chances to be 

found among 100 tree searches, we used 20,000 simulated DNA sequence alignments from a 

previous study (Höhler et al. 2022a), in which each gene alignment was simulated on the empirical 

data-derived gene tree and the model parameters in the RAxMLGrove database (Höhler et al. 

2022b), which contains RAxML and RAxML-NG users’ phylogenetic data on two web-servers 

(https://raxml-ng.vital-it.ch and https://www.phylo.org/index.php). Note that all taxon names in the 

simulation data sets were changed to artificial taxon IDs (e.g., taxon1). 

 

For each of 20,000 simulated DNA sequence alignments, we conducted 100 tree searches using 100 

runs for IQ-TREE, 50 parsimony starting trees and 50 random starting trees for RAxML-NG, and one 

BioNJ starting tree, 50 parsimony starting trees and 49 random starting trees for PhyML (see 

Supplementary Text for details). For a given number of tree searches, the accuracy of gene tree 

estimation was calculated as the topological similarity between its single-gene tree and the 
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reference true tree using the quartet distance (topological similarity = 1- quartet distance) in the R 

package Quartet v1.2.5 (Smith 2019).  

 

Topological hypothesis testing 
We used the approximately unbiased (AU) test (Shimodaira 2002) in IQ-TREE to determine whether 

two gene trees were significantly different or not. Specifically, i) for each of 19,414 empirical gene 

alignments, we assessed whether the best-observed gene tree topology inferred from using R1, R10, 

R20, R40, R60, or R80 had significantly lower log-likelihood score than the best-of-100 gene tree 

topology found among 100 runs; ii) for each of 20,000 simulated gene alignments, we assessed 

whether the best-observed gene tree topology inferred from using R1, R10, R20, R40, R60, R80, or 

R100 had significantly higher log-likelihood score than the true gene tree (i.e., reference tree). The 

specific command line instructions and parameter settings for running AU tests are given in the 

Supplementary text. 

 

Statistical analyses 
All statistical analyses were performed in R v. 3.6.3. Pearson’s correlation coefficient was used to 

test for correlations among different variables. All bar or dot plots were generated using the ggplot2 

package (Wickham 2009) in R.  

 

 

Data availability 
All gene alignments, gene trees, and command lines, as well as summary statistics of the runs, are 

available on the figshare repository http://dx.doi.org/10.6084/m9.figshare.17086259. 
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Figure Legends  

Figure 1. Effect of different starting trees on maximum likelihood gene tree inferences. We 

conducted one independent ML tree search from BioNJ tree, parsimony tree, or random tree using 1 

CPU on a single compute node (see Methods for details). For each of 3,000 gene alignments, we 

defined the ML gene tree with the highest log-likelihood score as the best-of-3 ML gene tree 

topology found by a given ML program. a) Percentage of genes that achieved the best-of-3 ML gene 

tree topologies within a given ML program. b) Runtime of one independent ML tree search using 1 

CPU on the same node. The runtimes (in seconds) are shown in logarithm base 10. Horizontal bar in 

the boxplot denotes the median value. The individual results for each of 15 phylogenomic studies 

are given in Supplementary Figs. S1-S2. 

 

Figure 2. Effect of varying numbers of tree searches on finding the best-of-100 ML gene tree 

topology. For each of the 19,414 gene alignments from 15 diverse phylogenomic datasets (Table 1), 

we used 100 extensive tree searches with two maximum likelihood (ML) programs IQ-TREE and 

RAxML-NG. The ML gene tree topology with the highest log-likelihood score was defined as the best-

of-100 ML gene tree topology found among 100 tree searches for a given ML program. To assess the 

effect of varying numbers of tree searches on finding the best-of-100 ML gene tree topology, we 

asked whether the best-of-100 ML gene tree topology was encountered when using 1, 10, 20, 40, 

60, 80, and 100 tree searches for a given ML program, respectively. The dot plot at the upper left is 

based on all 19,414 gene alignments from 15 phylogenomic data sets. The rest of the dot plots show 

the individual results for each of the 15 phylogenomic data sets. Horizontally dashed lines denote 

95%. The number of taxa for each of 15 phylogenomic data sets was included on the top of each 

panel title.  

 

Figure 3. Comparisons of the best-of-100 ML gene tree topologies and the best-observed ML gene 

tree topologies found at varying numbers of tree searches. Here we examined all 19,414 single-

gene alignments when using varying numbers of tree searches. a) Difference in log-likelihood score 

between the best-of-100 ML gene tree topology found from R100 and the best-observed ML gene 

tree topology found from R1, R10, R20, R40, R60 or R80 for a given ML program. Each bar denotes 

mean value with standard deviation. b) Topological difference between the best-of-100 ML gene 

tree topology and the best-observed ML gene tree topology. The topological difference was the 

normalized Robinson-Foulds (nRF) distance between the best-of-100 gene tree topology and the 

best-observed gene tree topology. Each bar denotes mean value with standard deviation. c) 

Compositions of all 19,414 inferred ML gene trees when using varying numbers of tree searches for a 

given ML program. Comparing with the best-of-100 ML gene tree topology found from R100, we 

assigned the best-observed ML gene tree topology found from R1, R10, R20, R40, R60 or R80 into 

each of three categories: i) the best-observed ML gene tree has significantly lower log-likelihood 

score than the best-of-100 ML gene tree topology (in red); ii) the best-observed ML gene tree 

topology does not have significantly lower log-likelihood score than the best-of-100 ML gene tree 

topology (in light red); iii) the best-observed ML gene tree topology is the best-of-100 ML gene tree 

topology (in gray). We used the approximately unbiased (AU) test to evaluate whether the best-
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observed ML gene tree topology has significantly lower log-likelihood score than the best-of-100 ML 

gene tree topology or not.  

 

Figure 4. Characteristics of gene alignments that had different chances to achieve the best-of-100 

ML gene tree topologies. We assigned all 19,414 single-gene alignments from 15 phylogenomic 

studies into eleven groups according to the number of the best-of-100 ML gene tree topologies 

observed out of 100 tree searches. a) Total number of genes that achieved the best-of-100 ML gene 

tree topologies in each of eleven groups. b) Difficulty score of gene alignment in each of eleven 

groups. c) Number of parsimony-informative sites in gene alignment in each of eleven groups. d) 

Average bootstrap support across the best-of-100 ML gene tree topologies in each of eleven groups. 

Note that IQ-TREE introduces an ultrafast bootstrap, while RAxML-NG introduces a standard 

nonparametric bootstrap. e) Percentage of internal branches with high bootstrap support values 

across the best-of-100 ML gene tree topology (IQ-TREE: > 90 ultrafast bootstrap value; RAxML-NG: > 

70 standard bootstrap value) in each of eleven groups. f) Percentage of internal branches with near-

zero lengths (that is the internal branch length of < 0.0001) in each of eleven groups. Each bar 

denotes mean value with standard deviation in panels b-f.  

 

Figure 5. Effect of varying numbers of tree searches on concatenation- and quartet-based species 

tree estimations. a) For concatenation-based phylogenetic inference, we used 100 tree searches 

with IQ-TREE and RAxML-NG and compared the best-of-100 concatenation-based ML tree to the 

best-observed concatenation-based ML tree inferred from R1, R10, R20, R40, R60, or R80. b) For 

quartet-based phylogenetic inference, the quartet-based species tree was reconstructed from all the 

best-observed ML gene trees inferred using 1, 10, 20, 40, 60, 80, or 100 tree searches, respectively. 

We performed this analysis for each of 15 phylogenomic datasets with wASTRAL-h (Zhang and 

Mirarab 2022). To assess the effect of varying numbers of tree searches on the ASTRAL tree in terms 

of topology (panel b), mean branch support (panel c), and mean branch length in coalescent units 

(panel d), we compared the ASTRAL tree on the best-observed ML gene trees inferred from 1, 10, 

20, 40, 60, or 80 tree searches to the ASTRAL tree on the best-of-100 ML gene trees inferred from 

100 tree searches, respectively. In panels c and d, congruent internal branches denote bipartitions in 

ASTRAL trees on the best-observed ML gene trees inferred from a given number of tree searches 

that match those in ASTRAL trees on the best-of-100 ML gene trees inferred from 100 tree searches. 

Conflicting internal branches indicate bipartitions in ASTRAL trees on the best-observed ML gene 

trees inferred from a given number of tree searches that differ from those in ASTRAL trees on the 

best-of-100 ML gene trees inferred from 100 tree searches.  

 

Figure 6. Gene alignments with lower difficulty scores had a higher chance of finding the best-of-

100 ML gene tree topologies and are more likely to yield correct tree topologies. For each of 

20,000 simulated DNA sequence alignments from the previous study (Höhler et al. 2022a), we 

conducted 100 tree searches using 100 runs for IQ-TREE, 50 parsimony starting trees and 50 random 

starting trees for RAxML-NG, and one BioNJ starting tree, 50 parsimony starting trees and 49 

random starting trees for PhyML, respectively. a) Percentage of genes that achieved the best-of-100 
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ML gene tree topologies when using varying numbers of tree searches. b) Percentage of the best-

observed ML gene tree topologies found at varying numbers of tree searches that had higher log-

likelihood scores than true gene tree topologies. c) Mean topological similarity between the best-

observed ML gene tree topologies found at varying numbers of tree searches and the true gene tree 

topologies. The topological similarity was quantified by the quartet distance between the best-of-

100 ML gene tree topology and the true gene tree topology using the R package Quartet v1.2.5 

(Smith 2019). Following the previous study (Togkousidis et al. 2023), we divided the 20,000 

simulated gene alignments into three groups: the easy alignments (9,560 genes with a difficulty 

score below 0.3), the intermediate alignments (8,926 genes with a difficulty score between 0.3 and 

0.7), and the difficult alignments (1,514 genes with a difficulty score above 0.7). 
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Table  

Table 1. Summary of 15 phylogenomic datasets examined in this study. 

Study ID Dataset Taxon 
Level 

No. 
Tax
a 

No 
Loci 

Sampling 
Method 

Data 
Typ
e 

Study Reference 

Bee 
Animal: Bees Genus 190 753 UCE DNA Blaimer et al., Evolution, 2018 (Blaimer et al. 2018) 

Bird 
Animal: Birds Class 200 259 AHE DNA Prum et al., Nature, 2015 (Prum et al. 2015) 

Butterfly 
Animal: Butterflies Order 207 352 AHE DNA Espeland et al., Current Biology, 2018 (Espeland et al. 2018) 

Lizard 
Animal: Lizards Genus 29 136

1 
Exon-Capture DNA Blom et al., Syst Biol, 2017 (Blom et al. 2017) 

Marine-fish 
Animal: Marine 
fishes 

Superorde
r 

120 100
1 

UCE DNA Alfaro et al., Nat. Ecol. Evol. 2018 (Alfaro et al. 2018) 

Rodent 
Animal: Rodents Family 37 124

5 
Exon-Capture DNA Roycroft et al., Syst Biol, 2019 (Roycroft et al. 2020) 

Cardueae 
Plant: Cardueae Family 85 570 UCE DNA Herrando-Moraira et al., Mol Phyloge Evol, 2018 (Herrando-Moraira et al. 

2018) 

Caryophyllales 
Plant: Caryophyllales Order 95 112

2 
Transcriptome AA Yang et al., Mol Biol Evol, 2015 (Yang et al. 2015) 

Green-Plants 
Plant: Green plants Phylum 1178 410 Transcriptome AA 1KP Initiative, Nature, 2019 (One Thousand Plant Transcriptomes Initiative 2019) 

Jaltomata 
Plant: Jaltomata Genus 15 643

1 
Transcriptome DNA Wu et al., Mol Ecol, 2018 (Wu et al. 2018) 

Protea 
Plant: Protea Genus 65 498 AHE DNA Mitchell et al., American Journal of Botany, 2017 (Mitchell et al. 2017) 

Aspergillaceae 
Fungi: Aspergillaceae Order 93 166

8 
Genome DNA Steenwyk et al., mBio, 2019 (Steenwyk et al. 2019b) 

Saccharomycotina-
Cell 

Fungi: Budding 
yeasts 

Subphylum 343 240
8 

Genome AA Shen et al., Cell, 2018 (Shen et al. 2018) 

Hanseniaspora 
Fungi: Hanseniaspora Family 29 103

3 
Genome AA Steenwyk et al., PloS Biol, 2019 (Steenwyk et al. 2019a) 

Rhizoplaca 
Fungi: Rhizoplaca Genus 31 303 Genome DNA Leavitt et al., Sci Rep, 2016 (Leavitt et al. 2016) 

UCE: Ultraconserved Element, AHE: Anchored Hybrid Enriched, DNA: deoxyribonucleic acid, AA: amino acid.   
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