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INTRODUCTION: Primates have evolved a di-
verse set of social systems, from solitary living
to large multilevel societies. The traditional
socioecological model explains this diversity as
a response to changing environments, which
shaped patterns of cooperation and competi-
tion for resources and predator defense. How-
ever, the socioecological model does not explain
why sympatric species living in the same envi-
ronment exhibit different social systems. There
is a growing consensus that primate social
organization shows a strong phylogenetic sig-
nal as a result of shared inheritance from a
common ancestor and evolved stepwise along
with species differentiation. This implies a ge-
netic basis for the evolution of animal social

systems. However, the genomic mechanisms
that underlie the expression of primate social
systems remain poorly understood.

RATIONALE: Asian colobines, a subfamily of
Old World monkeys, are represented by seven
genera and 55 species that are distributed
from tropical rainforests to snow-covered
mountains. They exhibit four distinct types of
social organization and provide a good model
for examining the mechanisms that drive so-
cial evolution from a common ancestral state
to the diverse systems present today. By inte-
grating new genomic data across all seven
colobine genera with paleoenvironmental in-
formation, the fossil record, social organization

characteristics, social behavioral character-
istics, and ecological niche modeling, we con-
structed a socioecological-genomic framework to
identify selective pressures that form the genetic
basis for social evolution in Asian colobines.

RESULTS: To understand the evolutionary pro-
cess of social systems in Asian colobines, we
first reconstructed their phylogenetic relation-
ships using whole-genome data. In contrast to
the previous hypothesis of three major clades,
our study reveals that Asian colobines split
into two clades: the odd-nosed monkeys and
the classical langurs. Our phylogenetic analy-
ses detected a strong signal in colobine social
evolution, suggesting that these social systems
evolved in a stepwise manner, with ancestral
one-male, multifemale groups fusing into semi-
multilevel societies characterized by fission-
fusion and thenmerging into complexmultilevel
societies. Consistent with our ecological re-
sults indicating that extant colobine primates
that inhabit colder environments tend to live
in larger groups, we found that adaptations
driven by ancient cold events, including the
late Miocene cooling and Pleistocene glacial
periods, played an important role in promot-
ing these changes in social evolution. Further-
more, our genomic analyses revealed that these
cold events promoted the selection of genes
involved in energy metabolism and neurohor-
monal regulation. In particular, more-efficient
dopamine and oxytocin pathways developed
in odd-nosed monkeys, which might have re-
sulted in the prolongation of maternal care
and lactation, favoring infant survival in cold
environments. These adaptive changes also ap-
pear to have strengthened interindividual af-
filiation, increased male-male tolerance, and
facilitated the stepwise social aggregation from
independent one-male, multifemale groups to
large multilevel societies in Asian colobines.

CONCLUSION: Our results reveal a stepwise
evolutionary scenario of social organization in
Asian colobines. We show that ancient glacial
events selected for neurohormonal regulation,
includingdopamine andoxytocin pathways that
promoted aggregation from one-male, multi-
female groups into large multilevel societies.
Our study demonstrates a direct link between
a genomically regulated adaptation and social
evolution in primates and offers new insights
into themechanisms that underpin behavioral
evolution across animal taxa.▪
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Adaptation for survival in cold climates facilitated evolution of social behavior in colobine monkeys. Cold
environments promoted the social evolution of Asian colobines in a stepwise manner. Genomic changes in
neurohormonal regulation, including in the dopamine and oxytocin pathways, improved social affiliation in odd-nosed
monkeys and thus promoted social aggregations from independent one-male, multifemale groups into large
multilevel societies. Ma, million years ago.
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evolution in Asian colobine primates
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The biological mechanisms that underpin primate social evolution remain poorly understood. Asian
colobines display a range of social organizations, which makes them good models for investigating social
evolution. By integrating ecological, geological, fossil, behavioral, and genomic analyses, we found
that colobine primates that inhabit colder environments tend to live in larger, more complex groups.
Specifically, glacial periods during the past 6 million years promoted the selection of genes involved in
cold-related energy metabolism and neurohormonal regulation. More-efficient dopamine and oxytocin
pathways developed in odd-nosed monkeys, which may have favored the prolongation of maternal care
and lactation, increasing infant survival in cold environments. These adaptive changes appear to have
strengthened interindividual affiliation, increased male-male tolerance, and facilitated the stepwise
aggregation from independent one-male groups to large multilevel societies.

P
rimates have evolved a diverse set of
social systems (1–3). From solitary living
and small families to large multilevel
societies, evolution associated with var-
ied behavioral tactics has allowed pri-

mates to successfully exploit a wide range of
habitats (4–9). The socioecological model ex-
plains the diversity of primate social systems
as a response to changing environments,
which shaped patterns of cooperation and
competition for resources and predator de-
fense (10–12). However, the socioecological
model does not explain why sympatric species
can live in the same environment but exhibit
different social systems (13, 14).
Evidence increasingly supports that the so-

cial system of different primate taxa is likely
inherited from a recent common ancestor,
rather than evolving as a direct adaptation to
current environmental conditions (15, 16). For
example, although they inhabit the same rain-

forest, white-handed gibbons form monoga-
mous pairs, whereas Thomas’s langurs live in
a one-male, multifemale polygynous group;
long-tailed macaques live in multimale, multi-
female groups; and Bornean orangutans live
solitarily with occasional social contact (17).
Therefore, there is a growing consensus that
certain components of social systems have a
strong phylogenetic signal (5, 18) and evolved
in a stepwise manner in conjunction with spe-
cies differentiation (16, 19). However, the geno-
mic mechanisms that constrain or promote
the expression of primate social systems re-
main poorly understood (20, 21).
Asian colobines, a subfamily of Old World

monkeys, are represented by seven genera and
55 species that are distributed from tropical
rainforests to snow-covered mountains. They
exhibit four distinct types of social organiza-
tion and provide a goodmodel for examining
themultiple mechanisms that have driven their
social evolution from a common ancestral state
to the diverse systems that are present today
(Fig. 1 and data S1). These Asian colobines are
categorized into two clades (22). The classical
langurs (genera Presbytis, Semnopithecus, and
Trachypithecus) are each principally charac-
terized by a one-male, multifemale unit; poly-
gynous mating; and strict male territorial
defense. In addition, a small number of species
in this clade such as theHimalayan gray langur
(Semnopithecus schistaceus) and the Indo-
chinese langur (Trachypithecus crepusculus)
exploit high-altitude forests and occasionally
form cohesive larger multimale, multifemale
groups (Fig. 1C). By contrast, species in the odd-
nosed monkey clade exhibit a wide spectrum
of social systems. Simakobus (genus Simias)

live in independent one-male, multifemale
units, whereas doucs (genus Pygathrix) and
proboscis monkeys (genus Nasalis) live in dis-
tinct nonterritorial one-male,multifemale units,
which seasonally fuse into a single breeding
band or aggregate together at nighttime sleep-
ing sites (23) (data S1). We term these semi-
multilevel societies because this social system
is characterized by flexibility in switching be-
tween independent one-male, multifemale units
andmultilevel societies. The last group of odd-
nosed monkeys are the snub-nosed monkeys
(genus Rhinopithecus). They live in typical
multilevel societies, which are composed of sev-
eral core one-male,multifemale units embedded
within a stable and larger social matrix and
associated all-male bachelor bands (24).
In this study, we integrated newly acquired

de novo high-quality genome data represent-
ing all seven colobine genera with paleo-
environmental information, the fossil record,
type of social organization, level of intrasexual
tolerance, and ecological databases from 2189
habitat locations (data S2) of 48 extant Asian
colobine species. This allowed us to construct a
comparative dynamic socioecological-genomic
framework that identifies the genetic basis of
social evolution in primates.

Phylogeny reconstruction

To understand the social evolution of Asian
colobines, we clarified their phylogenetic rela-
tionships and natural histories. To resolve
previous inconsistencies concerning colobine
phylogenetic relationships (25, 26), we se-
quencedandanalyzed sevendenovo genomesof
species from all seven genera of Asian colobines
[supplementary materials (SM) section 3.3.1].
Based on a combination of the concatenation
method and the coalescent method, a new
phylogenomic tree was reconstructed from
a total of 4992 one-to-one orthologs (fig. S7).
With calibrations from new fossil discov-
eries, we were able to develop greater preci-
sion in divergence time estimates (Fig. 2A).
This new high-confidence topological struc-
ture enabled us to trace the evolutionary his-
tory of social systems in Asian colobines. The
results revealed that Asian colobines split into
twowell-supported clades: the odd-nosedmon-
keys and the classical langurs. The genera
Presbytis, Semnopithecus, and Trachypithecus
are best described as a monophyly of the clas-
sical langurs (Fig. 2A). These results contrast
with the hypothesis of threemajor clades, with
Presbytis located at the basal position of an
independent monophyly, which was proposed
in previous studies (27, 28).

Phylogenetic signal of social evolution

To understand how the set of social organi-
zations of extant Asian colobines was shaped
by their phylogenetic lineage, we used phylog-
eny trait reconstruction modeling. Based on
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the new phylogenomic tree (fig. S2, data S3, and
SMsection 3), we used Pagel’s l (29) and Phylo.D
(30) to evaluate the strength of the phylogenetic
signal in their social evolution. The results showed
a strong signal [Pagel’s l = 0.81, log likelihood
(LL) = 34.98, probability of l resulting from
Brownian model (Pl_Brownian) = 1; estimated
Phylo.D (D) = −0.44, probability of D resulting
from Brownian model (PD_Brownian) = 0.87] in
colobine social evolution (table S6 and SM
section 4.1). Next, we used a macroevolutionary

model fitting analysis to compare the fit factors
of phylogenetically associated models [l, k, d,
early burst (EB)] with nonphylogenetic models
(white-noise model) in Asian colobines. The re-
sults showed that the likelihood of each of the
four phylogenetically associatedmodels was sig-
nificantly higher than that of the white-noise
model (table S10). These results indicate that dur-
ing their evolutionary history, phylogeny was a
relevant driving factor rather than a random
factor in colobine sociality (SM section 4.1.2).

To verify whether social evolution in Asian
colobines was stepwise, we compared ordered
(stepwise) models with an unordered evolu-
tion model using MultiState in BayesTraits.
By comparing the marginal likelihoods among
the three candidate stepwise models (SM sec-
tion 4.1.3) and the unrestricted model (un-
ordered model) (fig. S2), a strong Bayes factor
(log BFmodel_OMM or OSM >10; see SM section
4.1.3) suggested that Asian colobine social
systems evolved in a stepwisemanner (fig. S2A
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and table S8). Therefore, we investigated these
lineage-specific evolutionary pathways in great-
er detail.
We traced the set of social conditions for

each of the ancestral nodes using a Bayesian
phylogenetic framework (SM section 4.1.4 and
Fig. 2B). The results showed that themost likely
ancestral social state of Asian colobines (Fig. 2B)
was an independent one-male,multifemale unit
[probability of ancestral state (ASPOMU) = 0.76 ±
0.16]. Based on the Bayesian phylogenetic
framework results, we identified three line-
ages of ancestral Asian colobines, each with
a different social evolutionary history (Fig. 2B
and fig. S2). The first lineage retained the
ancestral one-male, multifemale unit system
that is present in most of the classical langurs,
such as Presbytis (Fig. 2, B and C). The second

lineage included a small number of classi-
cal langurs, such as the Indochinese langur
(T. crepusculus) (Fig. 2B), that inhabit moun-
tainous regions and tend to merge into larger
multimale, multifemale groups. This contrasts
with their sister species that live in warmer
lowland regions and form single or inde-
pendent one-male, multifemale units.
The third evolutionary pathway is related

to the stepwise aggregation of core one-male,
multifemale units intomultilevel societies that
characterize the odd-nosedmonkey clade. The
Bayesian phylogenetic framework results indi-
cate that in this lineage, the ancestral inde-
pendent one-male, multifemale units aggregated
into semi-multilevel societies after splitting
from the common ancestor of the odd-nosed
monkey clade about 6.5 million (7.0 million to

5.7 million) years (Ma) ago (Figs. 2, B and C,
and 3A). Subsequently, the lineage leading to
the extant doucs (Pygathrix) and proboscis
monkeys (Nasalis) inherited this social sys-
tem, withmultiple one-male,multifemale units
sharing a home range through a process of
fusion-fission (data S1 and S7). Simias, by con-
trast, independently reverted to an ancestral-
like social system characterized by independent
one-male,multifemale units.Our results indicate
that the snub-nosed monkeys (Rhinopithecus)
represent the second step of social aggregation
from semi-multilevel societies to typical multi-
level societies, with multiple one-male, multi-
female units forming a large stable breeding
band in which residents travel, rest, and feed to-
gether throughout the year. The breeding band,
which may include more than 100 individuals,
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is shadowed by all-male bachelor bands (Fig.
2B). These results demonstrate that social
evolution in Asian colobines represents a newly
discovered two-step pathway from ancestral
independent one-male, multifemale units to
large aggregated multilevel societies. This path-
way is distinct from that of African papionins
(e.g., gelada, hamadryas baboon), whose multi-
level societies evolved through the internal
fissioning of large multimale, multifemale
groups (4, 31).

Social systems under contrasting environments

To understand how ecological factors have
shaped primate social evolution, we constructed
an Asian colobine ecological dataset (data S2)
based on 19 bioclimatic variables that were
extracted from a total of 2189 current locations

across the ranges of 48 extant Asian colobine
species (data S2). Based on principal compo-
nents analyses, we found that species that are
presently distributed in colder, drier, andmore
seasonal climates tend to live in larger groups,
whereas species that inhabit warmer and
moister environments tend to form smaller
groups (Fig. 2, D and E). The mean and sta-
bility of temperature and humidity were iden-
tified as the main factors that affect group size
in odd-nosedmonkeys (which explained 84.8%
of the variance) and classical langurs (which
explained 85.7% of the variance) (table S9).
Furthermore, the random-walkmodel for con-
tinuous traits in BayesTraits (32) showed that
group size was negatively correlated with an-
nual mean temperature [Pagel’s l = 0.59; corre-
lation coefficient (R) = −0.69; log BF = 17.75,

which is greater than 10], indicating that cold
conditionsmayhave selected for increasedgroup
size in both clades of Asian colobines (SM sec-
tion 4.3.2). This pattern of enhanced sociality in
cold and dry environments has also been re-
ported in Australian rodents (33) and cooper-
ative breeding birds (34). In the case of Asian
colobines, transitions from one social system
to another appear to have occurred at ancient
evolutionary nodes and have been retained
over long periods of time. This suggests that
colobine social systems may reflect adapta-
tions to ancient environmental conditions rather
than a direct response to current environmen-
tal conditions.

Evolutionary history and radiation

Assuming that ancient ecological factors played
an important role in promoting stepwise
social evolution (Figs. 1 and 2), we traced the
natural and social evolutionary history of Asian
colobines over the past 8 Ma. This was accom-
plished by integrating data from new discov-
eries in the fossil record (data S4), paleogeology,
paleogeography, paleoclimate, and historical
sea level dynamics (data S5), as well as the
present geographical distribution of indi-
vidual Asian-colobine taxa (data S2). Using
BioGeography with Bayesian and likelihood
evolutionary analysis, we reconstructed the
ancestral distribution pattern of Asian colobines
(SM section 4.4.3 and fig. S12). In comparing
the likelihoods of the resulting candidate mod-
els, with results from geographic and multiple-
state speciation and extinction analyses (SM
section 4.4.2 and fig. S11), we found that an-
cient dispersal routes and geographic isola-
tion appear to have played important roles in
Asian colobine speciation (Fig. 3D).
In contrast to the previous hypothesis that

ancestral colobines dispersed into Asia via a
northern route through China (35), we com-
bined data on newly reported Mesopithecus
fossils (7.9 to 7.0Maago) found inPakistan, Iran,
and Afghanistan (SM section 4.4.5 and fig. S3)
that support an alternative scenario. The com-
mon ancestor of Asian colobines,Mesopithecus,
first entered Eastern Asia via the Indian sub-
continent during the lateMiocene (10.8 to 7.8Ma
ago) (Fig. 3D and data S4). Integrating this
scenario with divergence times estimated from
our newly constructed phylogenomic tree, we
suggest thatMesopithecus spread throughout
India and thendivided into two clades at about
7.6 (8.0 to 6.7) Ma ago (Fig. 3, A and D).
One clade likely gave rise to the common

ancestor of classical langurs, includingPresbytis,
Semnopithecus, and Trachypithecus, within a
monophyletic clustering (Fig. 3A). Because of
the uplifting of the Himalayas, some elements
of this radiation spread eastward through the
Indo-China Peninsula into warmer tropical
forests in Sundaland during the late Miocene,
around 7.4 (7.8 to 6.6) Ma ago. This group
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Fig. 3. Natural history of Asian colobines. (A) Reconstructed phylogenetic relationship of Asian
colobines. The node bars indicate the 95% confidence interval for each branch. (B) Demographic history
of seven Asian colobines estimated by PSMC. The regions marked with a vertical blue bar correspond
to glacial periods. g, generation time; u, mutation rate. (C) Historical sea surface temperature and
relative sea level over the past 9 Ma. (D) A new dispersal scenario proposed for Asian colobines. The
orange line shows the proposed route of the odd-nosed clade (fossil records shown as dots), and the
green line represents the classical langurs (fossil records shown as pentagons). (E) Ecological niche
modeling for odd-nosed monkeys during the Last Interglacial (LIG; ~116 thousand to 130 thousand years
before the present) and the Last Glacial Maximum (LGM; ~26.5 thousand to 19.0 thousand years
before the present) period. [Credits: All monkey illustrations are copyrighted 2014 by Stephen D. Nash/
IUCN/SSC Primate Specialist Group and used with permission]
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evolved into the genus Presbytis (Fig. 3, A
and D). During the Pliocene, about 4.9 (5.6 to
4.2) Ma ago, other members of this clade
divided into two populations. One remained
in the Indian subcontinent and evolved into
Semnopithecus, whereas the other migrated
eastward, spreading into southwest China and
the Indo-China Peninsula in the Pleistocene. This
lineage evolved into the genus Trachypithecus
(Fig. 3, A and D).

Cold events promoted social aggregation in
odd-nosed monkeys

In contrast to the classical langurs, our results
suggest that cold events played an important
role in adaptation and social aggregation along
with speciation in the common ancestor of
odd-nosed monkeys (Fig. 3). Combined with
the new fossil Mesopithecus pentelicus, which
was found in Zhaotong, Yunnan Province,
China (identified as the most recent common
ancestor of the odd-nosed monkey clade) (36)
andwas dated to 6.4 (6.7 to 6.0)Ma ago during
Late Miocene Cooling (7.0 to 5.4 Ma ago), we
propose that the ancestor of odd-nosed mon-
keys dispersed eastward from the Indian sub-
continent, along the uplifted Himalayas, and
then dispersed into the southeastern margin
of the Tibetan Plateau (Hengduan Mountains
region) (7.6 to 6.5 Ma ago) (Fig. 3, A and C).
Paleoenvironmental evidence shows that after
their arrival, the common ancestor of odd-
nosed monkeys encountered a cooler and
drier climate caused by the rapid uplifting
of the Hengduan Mountains (8.0 to 6.0 Ma
ago) during a global cooling period in the late
Miocene (Fig. 3D and data S5). An additional
changing monsoon climate in the area has
also enhanced the cooling effects (fig. S3 and
data S5). These events coincided with the evo-
lution from an ancestral one-male, multifemale
unit to a semi-multilevel society in odd-nosed
monkeys (Figs. 2B and 3B). The results indi-
cate that adaptations related to these cold
events appear to have resulted in larger and
more aggregated social groups in the odd-
nosed monkey clade (Fig. 3).
Subsequently, the ancestors of odd-nosed

monkeys evolved into four genera (Fig. 2A).
Along with these cold events, the common
ancestor of proboscis monkeys (Nasalis) and
simakobus (Simias)migrated southward, cross-
ing the land bridge that connected isolated
islands in Southeast Asia (Sundaland) at about
6.5 (7.0 to 5.7) Ma ago. This radiation dispersed
into tropical forests as far as Sumatra and
Borneo (Fig. 3, D and E), facilitated by a fall in
sea level caused by expanding ice sheets in the
polar regions during glacial events (Fig. 3 and
fig. S3).
The ecological niche modeling and pairwise

sequentially Markovian coalescent (PSMC)
analyses suggest that alternating glacial and
interglacial events during the Pleistocene re-

sulted in reconnection and disconnection of
land bridges as well as the expansion and con-
traction of suitable habitats (Fig. 3, B and E).
This led to the isolation and divergence of
proboscis monkeys and simakobus about 1.4
(2.4 to 0.8) Ma ago (Fig. 3, A and D). This
dispersal scenario is consistent with the semi-
multilevel society social grouping patternmain-
tained by proboscis monkeys, even though
they presently inhabit warmer environments.
By contrast, simakobus, which today only in-
habit the Mentawai Islands west of Sumatra,
reverted to independent one-male groups, sim-
ilar to the Asian colobine ancestral condition.
The remaining odd-nosed monkeys gave

rise to the commonancestor of doucs (Pygathrix)
and snub-nosedmonkeys (Rhinopithecus), which
adapted to the cold climate present in the
northern region of East Asia during the Late
Miocene Cooling (6.5 to 6.2 Ma ago). Later, a
branch of this radiationmigrated south into the
Indo-ChinaPeninsula andevolved intoPygathrix
at 6.2 (6.6 to 5.4) Ma ago (Fig. 3A). The PSMC
analysis also showed that an expansion in the
effective population size of doucswas associated
with an increase in cold temperatures during
the middle and late Pleistocene glacial event
(Fig. 3B). Compared with the semi-multilevel
societies of proboscis monkeys, in which non-
territorial one-male, multifemale units aggre-
gate together only at night, the semi-multilevel
societies of doucs are characterized by an ex-
tended aggregation period during the rainy
season. The more cohesive semi-multilevel
societies of doucs appear to be related to a
longer period of inhabiting glacial environ-
ments in colder northern regions compared
with proboscis monkeys.
By contrast, the snub-nosed monkeys (genus

Rhinopithecus) evolved from an ancestral line-
age that remained in the north and exper-
ienced all major Pleistocene glacial cold events
in high-latitude forests (data S1 and S2). Today,
four of the five Rhinopithecus species are con-
strained to high-altitude temperate mountain
forests up to 4500 m. These habitats are char-
acterized by relatively cool summers and ex-
tended cold winters. This includes the golden
snub-nosedmonkeys (Rhinopithecus roxellana),
which occupy the northern-most distribution
of all colobine species (Fig. 1B). Through step-
wise social evolution, snub-nosed monkeys
evolved a social system distinguished by larger
group size, increased male intrasexual toler-
ance, and the stable social aggregation of one-
male, multifemale units that characterize their
typical multilevel societies (Fig. 2B).

Colobine genomic evolution

These phylogenetic-based and cold-driven evo-
lutionary scenarios point to a potential genetic
mechanism that promoted the stepwise process
of social aggregation in Asian colobines. Eco-
logical pressuresmay have selected for genomic

changes early in colobine evolution that pro-
moted an expansion of prosocial behaviors.
Therefore, to identify the genetic basis of pri-
mate social evolution, in addition to the ref-
erence genomes of two African colobines as
outgroups, we provide 10 genomes that rep-
resent all seven genera of Asian colobines,
including six genomes from all four genera
of odd-nosed monkeys (table S2).
Given that the ancestor of the odd-nosed

monkey clade was initially aggregated into
semi-multilevel groups in response to glacial
events, based on the genomes of four extant
genera, we reconstructed the genome of the
common ancestor of odd-nosedmonkeys using
likelihood-based and maximum parsimony
methods. Based on the branch-site and branch
model in phylogenetic analysis by maximum
likelihood (PAML) (37) and the evolutionary
rate model (38), we compared the adaptive
divergence between the ancestral odd-nosed
monkey and other primates in coding genes,
as well as the conserved model generated by
PhastCons (39) and the aov.phylo model in
GEIGER (40) for comparison of the conserved
noncoding elements (CNEs). For coding genes,
we identified 78 candidate positively selected
genes and 371 candidate rapidly evolving genes
from a total of 17,191 one-to-one orthologous
genes from whole-genome alignment. We then
filtered these candidate genes to reduce false-
positive results (SM section 5.1.6) and detected
30 positively selected genes and 228 rapidly
evolving genes (P < 0.05) (tables S14 and S16).
After obtaining the QQplot from all ortholo-
gous genes (fig. S15) and the false discovery
rate corrections, we further noticed a set of
genes with higher levels of significance (tables
S14 and S16). These genes are associated with
multiple functions, for example, cold-related
energy metabolism as the positively selected
gene HMCN2, which is involved in lipid me-
tabolism (41) and may aid in energy mainte-
nance in cold environments. We also identified
LTBP2 and FLNC as rapidly evolving genes,
which are involved in adipocyte differentia-
tion and fat degradation (42, 43) and may be
associated with nonshivering thermogenesis
to increase body heat during periods of low
temperature (44). In addition, we found a set
of rapidly evolving genes (table S16) related
to neurohormonal regulation, such as DLGAP3
and AP2A1, which are involved in neurotrans-
mission systems, such as the neurotransmis-
sion system that involves 5-hydroxytryptamine,
which regulates grooming and other social be-
haviors (45, 46).
In addition, we obtained a total of 23,038

CNEs and 4351 ultraconserved noncoding ele-
ments (UCNEs) and identified 636 specific
CNEs and 283 fast-evolving UCNEs (P < 0.05)
in ancestral odd-nosed monkeys that distin-
guished them from the outgroups (SM section
5.1.2 and Fig. 4A). Focusing on the selected
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genes and UCNE- and CNE-associated genes,
we annotated these genes to the Gene Ontol-
ogy terms and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway data-
base and performed gene enrichment analyses
using the KEGGOrthology Based Annotation
System (KOBAS) (47) (SM section 5.2). The
results showed that most of the high-ranking
significant Gene Ontology terms and the path-
ways were involved in immunity, fat metabo-
lism, and adaptations to a high-cellulose diet
(Fig. 4A and fig. S17). These pathways are as-

sociated with energy- and heat-acquiring
pathways that maintain body temperature to
survive in the cold, such as the phagosome and
Chagas pathways (SM section 5.2 and table
S18). In addition, based on the evolutionary
ratemodel, the analysis of rapidly evolvingGene
Ontology terms also distinguished similar pat-
terns as the enrichment analyses described
earlier in this section, such asmammary gland
development, fatty acid metabolism, and cellu-
lar glucose homeostasis (figs. S17 and S18). Im-
portantly, both of these analyses revealed that

genes associated with neurohormonal regu-
lation were significantly enriched (Fig. 4A).
These results imply that cold-related energy
metabolism and neurohormonal evolution ap-
pear to have jointly evolved in the common
ancestor of the odd-nosed monkey clade.

Genome-wide association with social evolution

Based on these results, we investigated ge-
nomic changes in all extant Asian colobines
that are relevant to social aggregation by ex-
ploring the potential genes and pathways that
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correlated with the group-size spectrum from
one-male, multifemale groups to multilevel
societies. First, we constructed an orthologous
gene set that focused on neurohormonal sys-
tems from nine genomes, including those

of extant odd-nosed monkeys and classical
langurs. Following the a priori candidate genes
method (48, 49), we obtained a total of 2103
orthologous genes that are defined as or ex-
hibited annotations in neurohormonal regula-

tion and social behavior from Gene Ontology
and the KEGG pathway database (table S25).
Focusing on these 2103 genes, we next per-
formed correlation analyses and used mean
group size as a continuous variable to represent
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different forms of social organization to com-
pare the evolutionary rate of each gene across
species. Based on a phylogenetic generalized
least squares (PGLS) regression analysis (50)
(SM section 5.4), we detected 213 genes that
were positively correlated and 66 genes that
were negatively correlated with group size
(Fig. 4B and table S26).
Then, focusing on these correlated genes,

we performed two independent analyses, the
enrichment analyses and the pathway corre-
lation analyses to distinguish the specific path-
ways that correlated with group size. The
enrichment analyses fromthese 213and66genes
usingKOBAS distinguished 349 pathways that
exhibited significant P values after correction
for false discovery rates. We then ranked these
pathways based on the P values (table S28).
For the pathway correlation analyses, we fo-
cused on the 213 positively correlated genes,
which may serve multiple functions across
pathways, and recategorized these genes into
105 corresponding pathways. By comparing
the evolutionary rate for each gene of each
species in a pathway withmean group size in
the corresponding species, we estimated the
Spearman’s correlation coefficients for each
pathway. We then ranked these pathways by
their correlation coefficients (tables S29 and
S30 and SM section 5.4).
The results of both analyses showed that

high-ranking pathways were primarily asso-
ciated with categories of energy metabolism,
neural signal transmission regulation, and im-
munity that may relate to group living (tables
S28 and S29). For example, the regulation of
lipolysis in adipocytes is associated with glu-
cose and lipid metabolism (51). These path-
ways are relevant to energy demands and
utilization and help to maintain body temper-
ature and compensate for heat loss in cold
environments (52). These high-ranking path-
ways also include those involved during the
bacterial invasion of epithelial cells, which
are reported to facilitate infection avoidance
(53, 54). These same pathways also appear to
function in cellulose fermentation by the gut
microbiome, which is related to the folivorous
diet of colobine primates (55). In addition, both
analyses indicated that the remaining high-
ranking pathways are engaged in neural sig-
nal transmission and regulation, such as the
sphingolipid signaling pathway, which is asso-
ciated with brain development and neural sys-
temmaintenance (56) (SM section 5.4), as well
as the particular hormones such as glutamate,
dopamine, oxytocin, and 5-hydroxytryptamine
(tables S28 and S29).
Moreover, both of the analyses distinguished

pathways related to materials that function in
neuron structure and the neuronal connec-
tivity system, including axon guidance, cho-
linergic synapse, and synaptic vesicles (tables
S28 and S29). The enrichment analyses also

distinguished dendrite, dendritic spine, syn-
apse, and neuron projection as high-ranking
Gene Ontology terms (table S28). These find-
ings lay the structural foundation for signal
transduction in the neural interaction network
(57). Importantly, based on the enrichment
analyses, the axon guidance and cholinergic
systems, which were the first- and the sixth-
highest-ranking pathways estimated from the
KEGG database, are reported to affect and con-
trol dopamine release (58). Moreover, these
analyses also distinguished the mitogen-
activated protein kinase signaling and glu-
tamatergic synapse pathways, which mediate
downstream calcium signaling for the oxyto-
cin and dopamine pathways (Fig. 4, C and D,
and tables S29 and S30). These neurotransmit-
ter systems, and the particular hormone types
that they serve, suggest that neurohormonal
regulation, including the oxytocin and dopa-
mine pathways, is significantly related to group
size in extant Asian colobines.
Therefore, we explored howneurohormonal

systems, including the dopamine and oxytocin
pathways, function in social behavior and the
evolution of social group size. Oxytocin and do-
pamine play essential roles in maternal reward
attachment, strengthening the mother-infant
bond and maintaining nursing (59–63). Mam-
mals living in colder environments tend to in-
crease maternal investment, such as prolonging
lactation and huddling periods to avoid infant
exposure during the cold season (64–66). There-
fore, we hypothesized that in response to cold
temperatures, more efficient oxytocin and do-
pamine pathways were selected for in the odd-
nosedmonkeys, resulting in enhancedmaternal
care and infant survival. Furthermore, higher
levels of oxytocin and dopamine also pro-
mote interindividual affiliation, mitigate inter-
group conflict, and increase social bonding
(67, 68). This could have facilitated increased
cooperation and neighbor-male tolerance (69, 70)
and thus may have favored social aggregation
from independent one-male,multifemale groups
to multilevel societies.

Rapid evolution in the oxytocin and dopamine
pathways is related to social aggregation

To understand the adaptive changes in the
oxytocin and dopamine pathways, we compared
all 104 oxytocin-related and 96 dopamine-
related orthologous genes (table S31) among
snub-nosed monkeys, which represent a multi-
level society; ancestral odd-nosed monkeys,
which represent a semi-multilevel society; and
classical langurs, which form independent one-
male, multifemale units. By using PAML (37),
hypothesis testing using phylogenies (71), and
specific amino acid change (72), our results
show that 22 (21.2%) genes in the oxytocin
pathway and 20 (20.8%) genes in the dopa-
mine pathway were selected in species that
form multilevel societies. This is significantly

higher than the 12 (11.5%) and 10 (10.4%) genes
selected in the same pathways of species that
form semi-multilevel societies (SM section 5.5
and tables S32 and S33), as well as signifi-
cantly higher than the four (3.8%) and three
(3.1%) genes selected in Asian classical langurs
that form independent one-male, multifemale
groups (chi-square test; Fig. 5E). This pattern
of genome-wide change in neuron structures
to signal transmission across different clades
is consistent with differences in the level of
social aggregation fromone-male,multifemale
units to multilevel societies.
In the case of the ancestral odd-nosed mon-

keys that initially formed semi-multilevel so-
cieties, a suite of gene changes was identified
in the oxytocin pathway (Fig. 5B and table S32).
These include RYR3, which showed specific
mutations that affect oxytocin release, and
ALOX12, which was positively selected and
regulates downstream milk secretion (Fig. 4E
and table S31). In the dopamine pathway, spe-
cific variations in genes and noncoding regu-
latory regions were identified (Fig. 5, A, C, and
D), for example, genes that affect dopamine-
regulation processes, such as PINK1, which is
responsible for dopamine synthesis; SLC18A1,
which influences dopamine transport; and
GRIA3, which functions in reward behavior
(fig. S23). In particular, we found that dopamine
receptor genes DRD1 and DRD3 were rap-
idly evolving genes in the ancestral odd-nosed
monkey clade (table S32). These G protein–
coupled receptors (GPCRs), which are precise
targets located in the cell membrane, play an
important role in binding extracellular dopa-
mine and transmit signals for intracellular
downstream responses (Fig. 5D). Taken to-
gether, these findings suggest that the oxytocin
and dopamine pathways evolved rapidly in an-
cestral odd-nosed monkeys, presumably in re-
sponse to the initial aggregation required to
form a semi-multilevel society.
Based on these findings, we examined the

specific amino acid changes in oxytocin and
dopamine pathway genes in each of the ex-
tant species of odd-nosed monkeys after their
radiation from their common ancestor. A total
of 22, 20, 10, and 6 genes in the oxytocin path-
way and 20, 15, 9, and 4 genes in the dopamine
pathway were identified in snub-nosed mon-
keys,which representmultilevel societies; doucs
and proboscis monkeys, which represent semi-
multilevel societies; and pig-tailed simakobus,
which represent one-male, multifemale units,
respectively (SM section 5.5 and tables S31 to
S35). For example, DRD5, which encodes a
dopamine receptor, had specific mutations in
extant multilevel societies and semi-multilevel
societies species (Fig. 4D) that were not pres-
ent in one-male, multifemale unit species. In
particular, specific amino acid changes in genes
CD38 andRYR1, which are associated with oxy-
tocin downstream regulation, and the coding

Qi et al., Science 380, eabl8621 (2023) 2 June 2023 8 of 12

RESEARCH | PRIMATE GENOMES
D

ow
nloaded from

 https://w
w

w
.science.org at Z

hejiang U
niversity on June 01, 2023



region of the gene OXTR were present in
multilevel society and semi-multilevel society
species but were absent in one-male, multi-
female unit species (Fig. 5B and tables S31 to
S35). By contrast, GCH1 and PRKCB, which
are associated with dopamine synthesis and
downstream response regulation, were se-
lected in multilevel society species but not in
semi-multilevel society species or one-male,
multifemale unit species (Figs. 4E and 5, C and
D; and table S32). Furthermore, the multilevel
society species exhibited a shared threonine-
to-serine mutation in DRD1, which encodes a
dopamine receptor, in contrast to semi-multilevel
society species or one-male, multifemale unit
species (Fig. 4E), which do not. These genetic
changes in the oxytocin and dopamine path-
ways reveal changing patterns in the neurohor-
monal regulation system that appear related to
different levels of affiliation behavior (Fig. 2B).
Considering the importance of receptors in

intercellular signal transduction and intracel-
lular downstream responses, we used GPCR-I-
TASSER to construct three-dimensionalmodels
to simulate protein expression in four oxytocin
and dopamine receptors in snub-nosed mon-
keys, doucs, and François’ langurs, represent-
ing amultilevel society, a semi-multilevel society,
and a one-male, multifemale unit species, re-
spectively (73) (Fig. 5F and fig. S22). The re-
sults indicate that a specific amino acid change
of valine to isoleucine, located in the sixth
transmembrane region ofDRD1, was present
in the odd-nosed monkey clade, which repre-
sents the ancestral aggregation from one-male,
multifemale units to semi-multilevel societies
(Fig. 5F). This mutation site was simulated to
lie close to the binding pocket and thus may
affect dopamine binding activity in the odd-
nosed monkey clade; this mutation is not pres-
ent in DRD1 in Asian classical langurs and
African colobus monkeys of the subfamily
Colobinae, which represent independent one-
male, multifemale units (Fig. 5F). In addition,
the specific amino acid change of threonine to
serine in DRD1 in snub-nosed monkey species
that live inmultilevel societies wasmodeled to
locate the conserved topological domain. This
domain, which is located in the C-terminal
domain of the GPCR protein (fig. S22), plays
an important function in G protein coupling
and activation (74) and thusmay enhance intra-
cellular G protein binding in these species com-
pared with other species of colobines (fig. S22).
To confirm the functional expression of these

receptors, we conducted cellular experiments
that synthesized each sequence of DRD1 and
OXTR of the corresponding species, and these
were then transferred in vitro into human em-
bryonic kidney 293 (HEK293) cells. The results
showed that the expressed DRD1 had higher
binding efficiency in multilevel society species
than in semi-multilevel society species (P < 0.05;
Fig. 5H). Furthermore, the binding efficiency of

the expressed DRD1 in species that exhibit
either of these types of social organization
was significantly higher than that in species
with an independent one-male, multifemale
unit social organization (P < 0.05; Fig. 5H).
This finding is consistent with the pattern
shown by three-dimensional modeling. In addi-
tion, OXTR had a significantly higher binding
efficiency in multilevel society and semi-
multilevel society species than in independent
one-male, multifemale unit species (P < 0.05;
Fig. 5G). These results demonstrate a correla-
tion between species with increased social ag-
gregation and increased binding efficiency of
their dopamine and oxytocin receptors.
Overall, our results show integrated differ-

ences that involve multiple genetic changes
across various biological processes genome
wide, which are linked to neurohormonal reg-
ulation, including the oxytocin and dopamine
pathways. These changes are consistent with
differences in social organization and intermale
tolerance in Asian colobine species and may
underpin their ability to form large, stable, and
cohesive groups.

Increased behavioral affiliation is related to
oxytocin and dopamine regulation

To verify changes in social behavior in re-
sponse to different levels of neurohormonal
regulation, including the oxytocin and dopa-
mine expression, we compared the strength of
social affiliation among species represented by
each of the three types of social organization.
We constructed a behavioral dataset related to
social affiliation that involved 17 behavioral
categories collected from information reported
in 45 extant species of Asian colobines (data S1,
S2, S6, and S7). Analysis of variance (ANOVA)
tests revealed that neighbor-male tolerance;
interactions between one-male, multifemale
units; and time spent in social grooming as a
percentage of daily time budgets were signif-
icantly higher in multilevel society species than
in semi-multilevel society species and inde-
pendent one-male, multifemale unit species
(Fig. 5I). This is consistent with the expression
results of in vitro experiments, which support
our contention that genomic changes in the
regulation of neurohormonal systems, includ-
ing the oxytocin and dopamine pathways, may
promote affiliative behaviors that are more
pronounced in cold-adapted species.

Conclusion

In this study, we found that Asian colobines
that inhabit colder environments tend to live
in larger, more complex groups. By construct-
ing a socioecological-genomic framework, we
found that instead of evidence of direct adap-
tion to current environmental conditions,
historical patterns of dispersal, phylogenetic
species radiations, and adaptations to ancient
environmental conditions played a more crit-

ical role in the social evolution of Asian colo-
bines. Cold adaptations during ancient glacial
events in ancestral odd-nosed monkeys ap-
pear to have favored the selection of the neuro-
hormonal regulation system, from neuron
structure to signal transmission, which in-
cludes the dopamine and oxytocin pathways.
These changes in the dopamine and oxytocin
pathways appear to function in strengthening
social bonds, in facilitating male-male toler-
ance, and in shaping social affiliation. This
process played an important role in promoting
social aggregation from small, independent
one-male groups into larger multilevel socie-
ties. Our study identifies, for the first time, a
genomically regulated adaptation that is linked
to stepwise social evolution in primates and
offers new insights into the mechanisms that
underpin diverse behavioral evolution across a
range of animal taxa.

Materials and methods summary
Sequencing and assembly

We sequenced seven Asian colobine genomes
by using four technologies, including long-read
sequencing of Oxford Nanopore or PacBio
SMART, paired-end sequencing, and high-
throughput chromosome conformation cap-
ture (Hi-C). Different de novo assemblies were
performed using FALCON v.0.4.0 (75), wtdbg2
v.2.4.1 (76), and SOAPdenovo2 v. 1.0 (77) ac-
cording to the sequencing strategy used. Ge-
nomes with Hi-C reads were further scaffolded
to chromosome based on LACHESIS (78) or
3D-DNA (79).

Dataset resources

We compiled the datasets of social, behavioral,
and ecological traits of Asian colobines using
published information (SM section 2), which
include (i) social organization, such as group
size and composition (data S1); (ii) mating
system (data S1); (iii) social structure, which is
defined as social interactions and communi-
cation, including the proportion of the activity
budget devoted to social grooming (data S6);
(iv) ecological (bioclimatic) variables based on
occurrence location coordinates (data S2); and
(v) paleoecological data based on the fossil
record, paleoclimate, and paleogeography across
Asia (SM section 2.2).

Ecological analyses

Ecological nichemodelingwas conducted using
Maxent to reconstruct species distribution in
the present climate and under paleoclimates.
Principal components analysis was used to ex-
tract two main characters from 19 climate
variables for 2189 species occurrences in the
R package Multivariate Exploratory Data Analy-
sis and Data Mining with FactoMineR v.3.6.1
(80). Geographic informationwas processed in
ArcGIS (ArcGIS version 10.6, Environmental Sys-
temsResearch Institutes, Inc., Redlands,CA,USA).
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Reconstruction of phylogenomic relationships
One-to-one orthologs for phylogenomic rela-
tionship reconstruction were generated with
OrthoFinder v.2.0.9 (81). Then, these orthol-
ogous genes were used to generate two de-
pendent datasets, including a concatenated
coding sequence alignment and the fourfold
degenerate sites. For each dataset, a tree was
constructed with the concatenationmethod of
IQ-TREE v.1.6.12 (82) and coalescent method
of Astral v.2.0 (83), respectively. The diver-
gence time was estimated using MCMCtree
v.4.5 (37).

Phylogenetic analyses

Pagel’s l was estimated using the R package
GEIGER v.2.0.6 (40). The Phylo.D was esti-
mated using R package CAPER v.1.0.1 (50), and
the probability of the estimated D resulting
from the Brownian phylogenetic structure was
marked as PD_Brownian. BayesTraits v.3.0.2 (32)
was used to infer the social system state for
each ancestral node, whichwas determined by
calculating the ancestral state posterior prob-
ability. A random-walk Markov chain Monte
Carlo procedure in BayesTraits v.3.0.2 was used
to infer the correlated evolution between bio-
climatic variables and group size.

Reconstruction of ancestral geographic ranges

We reconstructed the ancestral range through
multiple biogeographical models (e.g., DIVA,
DEC, or BayAreaLike) using Reconstruct An-
cestral State in Phylogenies 4.2 (84). The best
model generated was used to reconstruct the
range in each ancestral node.

Demographic history reconstruction

Demographic history was inferred using PSMC
v.0.6.5 (85) under a hidden Markov model.
Paired-end Illumina sequences were aligned
to the repeat-masked genome assembly of each
species using the Burrows-Wheeler Alignment
tool v.0.7.17-r1188 (86). Then, consensus sequen-
ces were generated using Sequence Alignment/
Map format tools v.1.3.1 (87). Each PSMC test
was examined with 100 bootstrap replicates.

Comparative genomics analyses

Divergent (fast-evolving) UCNEs were iden-
tified by using the R package GEIGER v.2.0.6
(40). PhyloFit v1.4 (88) and phastConsv1.4 (39)
were used to infer CNEs. Orthologous genes
were constructed by using LAST v.last982 (89).
The pairwise synteny alignment analysis was
conducted for Asian colobine species aswell as
outgroups, with the human genome serving as
the reference. Then, the corresponding orthol-
ogous sequences were extracted based on the
gff file of the human genome. The Gene On-
tology and KEGG pathway enrichment analy-
ses were conducted using KOBAS v.3.0 (47).
Selection pressure tests were implemented by
both branch-site models and branch models

using PAML v.4.9 (37) through a likelihood
ratio test and strict filter criterion. An episodic
positive selection signal was detected using
the mixed effects model of evolution (90) im-
plemented in Hypothesis Testing using Phy-
logenies v.2.5.25 (71). Rapidly evolving Gene
Ontology terms were identified following the
evolutionary model and method proposed by
Wang et al. (38). Specific mutations were iden-
tified following the specific amino acid change
pipeline from Chen et al. (72) and were further
examined if they were located in functional
regions using the protein families database
Pfam v.1.6 (91). Genome-wide associations with
social evolution were explored using PGLS re-
gression analyses in the R package Compara-
tive Analysis of Phylogenetics andEvolution in
R (CAPER) v.1.0.1 (50).

Protein structure modeling

The 3D protein structure of the functional
region was simulated by GPCR-I-TASSER
(73) and then visualized using PyMOL (the
PyMOL molecular graphics system, version
2.0, Schrödinger, LLC). The binding cavity
was explored with the docking simulations
in Dock vina (92).

In vitro expression assay

For in vitro experiments, orthologous sequen-
ces were synthesized by General Biosystems
Corporation Limited (Anhui, China). All genes
were cloned into pcDNA3.1-V5-His vector sepa-
rately and expressed in HEK293 cells. After
48 hours, the supernatant was removed, the
cells were rinsed twice with phosphate-buffered
saline (PBS), and then multiple solutions were
added for an enzyme-linked immunosorbent
assay experiment. Absorbancemeasurements
were conducted at 370 nm within 30 min. Re-
sults were analyzed using GraphPad Prism. Sta-
tistical significancewas set at <0.05,mean± SD.

Measurement of receptor activity

ForDRD1, luciferase activitieswere determined
using luciferase assay kits (Beyotime, Shanghai,
China). In the case of OXTR, fluorescence was
measured using microplate reader SYNERGY
H1 (BioTek Instruments). HEK293 cells trans-
fectedwith pcDNAwere used as a control in all
luciferase experiments.
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